scholarly journals Energy Expenditure and Physical Activity in Recovering Malnourished Infants

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Russell Rising ◽  
Gul Tiryaki Sonmez

Background. Malnourished infants are small for age and weight.Objectives. Determine profiles in 24-hour energy metabolism in recovering malnourished infants and compare to similarly aged healthy controls.Methods. 10 malnourished infants (58.1±5.9 cm,7.7±5.6months) were healthy prior to spending 22 hours in the Enhanced Metabolic Testing Activity Chamber for measurement of EE (kcal/min), sleeping metabolic rate (SMR; kcal/min), respiratory quotient (RQ;VCO2/VO2), and physical activity (PA; oscillations in wt/min/kg body weight). Metabolic data were extrapolated to 24 hours (kcal/kg/d). Energy intake (kcal/kg/d) and the proportions (%) of carbohydrate, protein, and fat were calculated. Anthropometrics for malnourished infants were obtained. Statistical differences (P<.05) between groups were determined (SPSS, version 13).Results. In comparison to controls, malnourished infants were lighter (4.1±1.2versus7.3±0.8 kg;P<.05), had less body fat % (10.3±7.6versus25.7±2.5), and lower BMI (12.0±1.7versus15.5±1.5;P<.05). In contrast, they had greater energy intake (142.7±14.6versus85.1±25.8;P<.05) with a greater percentage of carbohydrates (55.1±3.9versus47.2±5.2;P<.05). However, malnourished infants had greater 24-hour EE (101.3±20.1versus78.6±8.4;P<.05), SMR (92.6±17.1versus65.0±3.9;P<.05), and RQ (1.00±0.13versus0.86±0.08;P<.05) along with a lower amount of PA (2.3±0.94versus4.0±1.5;P<.05).Conclusions. Malnourished infants require more energy, possibly for growth.

Author(s):  
Surabhi Bhutani ◽  
Jamie A Cooper ◽  
Michelle R Vandellen

ABSTRACTBackgroundThe COVID-19 pandemic has caused people to shelter-at-home for an extended period, resulting in a sudden rise in unstructured time. This unexpected disruption in everyday life has raised concerns about weight management, especially in high-risk populations of women and individuals with overweight and obesity. This study aimed to investigate the changes in behaviors that may impact energy intake and/or energy expenditure in U.S. adults during the home confinement.MethodsCross-sectional data from 1,779 adults were collected using an online Qualtrics survey between April 24th and May 4th, 2020. Self-reported data on demographics, eating behaviors, physical activity, sleep, screen time, takeout food intake, and food purchasing behaviors were collected. Chi-Square analyses were conducted to evaluate differences in the percent of participants reporting increasing, decreasing, or staying the same in each health behavior since the COVID-19 outbreak in their area. Each analysis was followed by comparing whether increases or decreases were more likely for each health behavior. Similar comparisons were made between male and female participants and between body mass index (BMI) categories.ResultsWe observed an increase in the intake of both healthy and energy-dense unhealthy foods and snacks during the home confinement. Participants also reported increases in sedentary activities and decrease in physical activity, alcohol intake, and consumption of takeout meals during this time. In women, several behavioral changes support greater energy intake and less energy expenditure than men. No clear difference in patterns was observed across BMI status.ConclusionAcute changes in behaviors underscore the significance of a sudden increase in unstructured time at home on potential weight gain. Our findings support the need to implement and support measures that promote strategies to maintain body weight and establish a methodology to collect body weight data at multiple time points to longitudinally assess the dynamic relationship between behaviors and body weight change.


1995 ◽  
Vol 73 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Jeroen H. H. L. M. Donkers ◽  
Elisabeth W. H. M. Fredrix ◽  
Piet oekhoudt

In adults, body mass (BM) and its components fat-free mass (FFM) and fat mass (FM) are normally regulated at a constant level. Changes in FM and FFM are dependent on energy intake (EI) and energy expenditure (EE). The body defends itself against an imbalance between EI and EE by adjusting, within limits, the one to the other. When, at a given EI or EE, energy balance cannot be reached, FM and FFM will change, eventually resulting in an energy balance at a new value. A model is described which simulates changes in FM and FFM using EI and physical activity (PA) as input variables. EI can be set at a chosen value or calculated from dietary intake with a database on the net energy of foods. PA can be set at a chosen multiple of basal metabolic rate (BMR) or calculated from the activity budget with a database on the energy cost of activities in multiples of BMR. BMR is calculated from FFM and FM and, if necessary, FFM is calculated from BM, height, sex and age, using empirical equations. The model uses existing knowledge on the adaptation of energy expenditure (EE) to an imbalance between EI and EE, and to resulting changes in FM and FFM. Mobilization and storage of energy as FM and FFM are functions of the relative size of the deficit (EI/EE) and of the body composition. The model was validated with three recent studies measuring EE at a fixed EI during an interval with energy restriction, overfeeding and exercise training respectively. Discrepancies between observed and simulated changes in energy stores were within the measurement precision of EI, EE and body composition. Thus the consequences of a change in dietary intake or a change in physical activity on body weight and body composition can be simulated.


2018 ◽  
Vol 79 (4) ◽  
pp. 191-195 ◽  
Author(s):  
Leticia C.R. Pereira ◽  
Sarah A. Elliott ◽  
Linda J. McCargar ◽  
Rhonda C. Bell ◽  
Carla M. Prado

Purpose: Energy metabolism is at the core of maintaining healthy body weights. Likewise, the assessment of energy needs is essential for providing adequate dietary advice. We explored differences in energy metabolism of a primigravid woman (age: 30 years) at 1 month prepregnancy (“baseline”), during pregnancy (33 weeks), and at 3 and 9 months postpartum. Measured versus estimated energy expenditure were compared using equations commonly used in clinical practice. Methods: Energy metabolism was measured using a state-of-the-art whole body calorimetry unit (WBCU). Body composition (dual-energy X-ray absorptiometry), energy intake (3-day food records), physical activity (Baecke questionnaire), and breastmilk volume/breastfeeding energy expenditure (24-hours of infant test–retest weighing) were assessed. Results: This case report is the first to assess energy expenditure in 3 different stages of a woman’s life (prepregnancy, pregnancy, and postpartum) using WBCU. We noticed that weight and energy needs returned to prepregnancy values at 9 months postpartum, although a pattern of altered body composition emerged (higher fat/lean ratio) without changes in physical activity and energy intake. For this woman, current recommendations for energy overestimated actual needs by 350 kcal/day (9 months postpartum). Conclusion: It is likely that more accurate approaches are needed to estimate energy needs during and postpregnancy, with targeted interventions to optimize body composition.


2020 ◽  
pp. 1-7
Author(s):  
Harry Freitag Luglio Muhammad ◽  
Dian Caturini Sulistyoningrum ◽  
Emy Huriyati ◽  
Yi Yi Lee ◽  
Wan Abdul Manan Wan Muda

Abstract The present study aimed to investigate an interaction between energy intake, physical activity and UCP2 gene variation on weight gain and adiposity changes in Indonesian adults. This is a prospective cohort study conducted in 323 healthy adults living in the city of Yogyakarta, Indonesia. Energy intake, physical activity, body weight, BMI, percentage body fat and waist:hip ratio (WHR) were measured at baseline and after 2 years while UCP2 -866G/A gene variation was determined at baseline. We reported that after 2 years subjects had a significant increment in body weight, BMI, body fat and reduction in WHR (all P < 0·05). In all subjects, total energy intake was significantly correlated with changes in body weight (β = 0·128, P = 0·023) and body fat (β = 0·123, P = 0·030). Among subjects with the GG genotype, changes in energy intake were positively correlated with changes in body weight (β = 0·232, P = 0·016) and body fat (β = 0·201, P = 0·034). These correlations were insignificant among those with AA + GA genotypes (all P > 0·05). In summary, we show that UCP2 gene variation might influence the adiposity response towards changes in energy intake. Subjects with the GG genotype of UCP2 -866G/A gene were more responsive to energy intake, thus more prone to weight gain due to overeating.


Author(s):  
Carla El-Mallah ◽  
Marie-Elizabeth Ragi ◽  
Nehmat El-Helou ◽  
Omar Obeid

<b><i>Introduction:</i></b> Humans are known to adapt to external temperature variations by altering energy intake, expenditure, and body fat storage for insulation [<xref ref-type="bibr" rid="ref1">1</xref>, <xref ref-type="bibr" rid="ref2">2</xref>]. However, it is not clear whether the temperature of ingested water would induce such effects. Similarly, the involvement of the temperature of the ingested beverage has not been addressed in terms of body weight changes [<xref ref-type="bibr" rid="ref3">3</xref>]. <b><i>Objectives:</i></b> This study was to investigate the effect of the ingestion of plain or sweetened water with varied temperatures on growth measures of rats. <b><i>Methods:</i></b> Approval was obtained from the Institutional Animal Care and Use Committee of the American University of Beirut. After a 1-week adaptation period, 5- to 6-week-old male Sprague-Dawley rats were randomly divided into their respective experimental groups, housed individually (22 ± 1°C, reverse light cycle 12:12 h dark/light, light off at 10:00 a.m.) with free access to food and beverage for 8 weeks. <b><i>Experiment 1 (Plain Water):</i></b> Two groups of rats (<i>n</i> = 9) consumed room-temperature [∼22°C] (NW) or cold [∼5°C] (CW) water. <b><i>Experiment 2 (Sweetened Water):</i></b> Four groups of rats were offered sweetened water for 12 h, followed by plain water; (1) 10% sucrose + cold temperature (CS, <i>n</i> = 7), (2) 10% sucrose + room temperature (NS, <i>n</i> = 8), (3) 0.05% acesulfame K + cold temperature (CA, <i>n</i> = 7), and 4) 0.05% acesulfame K + room temperature (NA, <i>n</i> = 8). Food and beverage intake, body weight, and body composition were monitored using NMR minispec (LF110 Body Composition Analyzer, Bruker, USA) and energy expenditure was calculated based on the equation developed by Ravussin et al. [<xref ref-type="bibr" rid="ref4">4</xref>]. Significance was set at a <i>p</i> value &#x3c;0.05. <b><i>Results:</i></b> Experiment 1: Body weight changes were similar between groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 1a). In the CW group, lean body mass (%) was significantly higher, while body fat (%) was lower than the NW (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 1b, c). These changes may relate to the calculated total energy expenditure [NW: 66.73 ± 4.49 kcal/day and CW: 73.75 ± 3.92 kcal/day) (<i>p</i> value = 0.003) since energy intake (NW: 89.97 ± 7.63 kcal/day vs. CW: 93.29 ± 6.26 kcal/day, <i>p</i> value = 0.329) was similar between groups. Experiment 2: Body weight of the CA group was higher than that of the other groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 2a). Lean body mass (%) of the sucrose-sweetened water groups (Fig. <xref ref-type="fig" rid="f01">1</xref>-Exp 2b, c) was significantly higher, while body fat (%) was lower than that of the non-caloric sweetened water groups; these were not affected by the temperature of the beverage. Those variations are mostly explained by the differences in energy expenditure (<i>p</i> value temperature × sweetener = 0.015), as energy intake was not significantly different between groups. <b><i>Conclusion:</i></b> Cold plain water decreased body fat and increased lean body mass with no effect on total body weight. Sucrose-sweetened water had a better impact on body composition irrespective of the temperature of the beverage. The beneficial effects are mainly due to increased energy expenditure rather than variations in energy intake. Thus, the energy cost of warming the water seems to have been derived from an increase in fat oxidation.


2021 ◽  
pp. 1098612X2110137
Author(s):  
James R Templeman ◽  
Kylie Hogan ◽  
Alexandra Blanchard ◽  
Christopher PF Marinangeli ◽  
Alexandra Camara ◽  
...  

Objectives The objective of this study was to verify the safety of policosanol supplementation for domestic cats. The effects of raw and encapsulated policosanol were compared with positive (L-carnitine) and negative (no supplementation) controls on outcomes of complete blood count, serum biochemistry, energy expenditure, respiratory quotient and physical activity in healthy young adult cats. Methods The study was a replicated 4 × 4 complete Latin square design. Eight cats (four castrated males, four spayed females; mean age 3.0 ± 1.0 years; mean weight 4.36 ± 1.08 kg; mean body condition score 5.4 ± 1.4) were blocked by sex and body weight then randomized to treatment groups: raw policosanol (10 mg/kg body weight), encapsulated policosanol (50 mg/kg body weight), L-carnitine (200 mg/kg body weight) or no supplementation. Treatments were supplemented to a basal diet for 28 days with a 1-week washout between periods. Food was distributed equally between two offerings to ensure complete supplement consumption (first offering) and measure consumption time (second offering). Blood collection (lipid profile, complete blood count, serum biochemistry) and indirect calorimetry (energy expenditure, respiratory quotient) were conducted at days 0, 14 and 28 of each period. Activity monitors were worn 7 days prior to indirect calorimetry and blood collection. Data were analyzed using a repeated measures mixed model (SAS, v.9.4). Results Food intake and body weight were similar among treatments. There was no effect of treatment on lipid profile, serum biochemistry, activity, energy expenditure or respiratory quotient ( P >0.05); however, time to consume a second meal was greatest in cats fed raw policosanol ( P <0.05). Conclusions and relevance These data suggest that policosanol is safe for feline consumption. Further studies with cats demonstrating cardiometabolic risk factors are warranted to confirm whether policosanol therapy is an efficacious treatment for hyperlipidemia and obesity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


2009 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
C. R. Hankey

Treatments to induce weight loss for the obese patient centre on the achievement of negative energy balance. This objective can theoretically be attained by interventions designed to achieve a reduction in energy intake and/or an increase in energy expenditure. Such ‘lifestyle interventions’ usually comprise one or more of the following strategies: dietary modification; behaviour change; increases in physical activity. These interventions are advocated as first treatment steps in algorithms recommended by current clinical obesity guidelines. Medication and surgical treatments are potentially available to those unable to implement ‘lifestyle interventions’ effectively by achieving losses of between 5 kg and 10 kg. It is accepted that the minimum of 5% weight loss is required to achieve clinically-meaningful benefits. Dietary treatments differ widely. Successful weight loss is most often associated with quantification of energy intake rather than macronutrient composition. Most dietary intervention studies secure a weight loss of between 5 kg and 10 kg after intervention for 6 months, with gradual weight regain at 1 year where weight changes are 3–4 kg below the starting weight. Some dietary interventions when evaluated at 2 and 4 years post intervention report the effects of weight maintenance rather than weight loss. Specific anti-obesity medications are effective adjuncts to weight loss, in most cases doubling the weight loss of those given dietary advice only. Greater physical activity alone increases energy expenditure by insufficient amounts to facilitate clinically-important weight losses, but is useful for weight maintenance. Weight losses of between half and three-quarters of excess body weight are seen at 10 years post intervention with bariatric surgery, making this arguably the most effective weight-loss treatment.


2003 ◽  
Vol 88 (12) ◽  
pp. 5914-5920 ◽  
Author(s):  
Yumi Matsushita ◽  
Tetsuji Yokoyama ◽  
Nobuo Yoshiike ◽  
Yasuhiro Matsumura ◽  
Chigusa Date ◽  
...  

Abstract The β3-adrenergic receptor (ADRB3) is expressed mainly in visceral adipose tissue and is thought to contribute to lipolysis and the delivery of free fatty acids to the portal vein. Although many studies have examined the relationship between the Trp64Arg mutation of ADRB3 and obesity, the results have been inconsistent. We examined the cross-sectional relationship of ADRB3 variants with indexes of obesity, and their longitudinal changes over 10 yr, in men and women, aged 40–69 yr, who were randomly selected from the Japanese rural population. The study considered both dietary energy intake and physical activity levels. Among the 746 participants, the genotype frequencies of the Trp64Trp, Trp64Arg, and Arg64Arg variants were 483, 224, and 39, respectively. The cross-sectional analysis showed no significant differences in height, weight, body mass index, blood pressure, serum total and high density lipoprotein cholesterols, and hemoglobin A1c among the genotype groups even after adjustments for gender, age, smoking, alcohol drinking, physical activity, and energy intake. No significant differences in the weight changes between the genotype groups were evident in the longitudinal analysis. We conclude that the Trp64Arg mutation of ADRB3 has little or no influence on either body weight or body mass index in the general Japanese population.


Sign in / Sign up

Export Citation Format

Share Document