scholarly journals Modeling air pollution in Lebanon: evaluation at a suburban site in Beirut during summer

2013 ◽  
Vol 13 (12) ◽  
pp. 5873-5886 ◽  
Author(s):  
A. Waked ◽  
C. Seigneur ◽  
F. Couvidat ◽  
Y. Kim ◽  
K. Sartelet ◽  
...  

Abstract. Beirut, the capital of Lebanon, which is located on the eastern shore of the Mediterranean basin, experiences high air pollution episodes. Annual average concentrations of coarse and fine particulate matter (PM2.5) as well as nitrogen oxides (NOx) often exceed the World Health Organization (WHO) guidelines. Therefore, improving air quality in this region is essential. The Polyphemus/Polair3D modeling system is used here to investigate air pollution episodes in Beirut during 2 to 18 July 2011. The modeling domain covers two nested grids of 1 and 5 km horizontal resolution over greater Beirut and Lebanon, respectively. The anthropogenic emission inventory was developed earlier (Waked et al., 2012). The Weather and Research Forecasting (WRF) model is used to generate the meteorological fields and the Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used for biogenic emissions. The results of the study are compared to measurements from a field campaign conducted in the suburb of Beirut during 2–18 July 2011. The model reproduces satisfactorily the concentrations of most gaseous pollutants, the total mass of PM2.5 as well as PM2.5 elemental carbon (EC), organic carbon (OC), and sulfate. Ozone concentrations are overestimated and it appears that this overestimation results mainly from the boundary conditions.

2012 ◽  
Vol 12 (11) ◽  
pp. 29571-29606 ◽  
Author(s):  
A. Waked ◽  
C. Seigneur ◽  
F. Couvidat ◽  
Y. Kim ◽  
K. Sartelet ◽  
...  

Abstract. Beirut, the capital city of Lebanon, which is located on the eastern shore of the Mediterranean basin, experiences high air pollution episodes. Annual average concentrations of coarse and fine particulate matter (PM2.5) as well as nitrogen oxides (NOx) often exceed the World Health Organization (WHO) guidelines. Therefore, improving air quality in this region is essential. The Polyphemus/Polair3D modeling system is used here to investigate air pollution episodes in Beirut during 2–18 July 2011. The modeling domain covers two nested grids of 1 and 5 km horizontal resolution over the greater Beirut and Lebanon, respectively. The anthropogenic emission inventory was developed earlier (Waked et al., 2012). The Weather and Research Forecasting (WRF) model is used to generate the meteorological fields and the Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used for biogenic emissions. The results of the study are compared to measurements from a field campaign conducted in the suburb of Beirut during 2–18 July 2011. The model reproduces satisfactorily the concentrations of most gaseous pollutants, the total mass of PM2.5 as well as PM2.5 elemental carbon (EC), organic carbon (OC), and sulfate.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abhishek Upadhyay ◽  
Sagnik Dey ◽  
Sourangsu Chowdhury ◽  
Rajesh Kumar ◽  
Pramila Goyal

Abstract To curb the staggering health burden attributed to air pollution, the sustainable solution for India would be to reduce emissions in future. Here we project ambient fine particulate matter (PM2.5) exposure in India for the year 2030 under two contrasting air pollution emission pathways for two different climate scenarios based on Representative Concentration Pathways (RCP4.5 and RCP8.5). All-India average PM2.5 is expected to increase from 41.4 ± 26.5 μg m−3 in 2010 to 61.1 ± 40.8 and 58.2 ± 37.5 μg m−3 in 2030 under RCP8.5 and RCP4.5 scenarios, respectively if India follows the current legislation (baseline) emission pathway. In contrast, ambient PM2.5 in 2030 would be 40.2 ± 27.5 (for RCP8.5) and 39.2 ± 25.4 (for RCP4.5) μg m−3 following the short-lived climate pollutant (SLCP) mitigation emission pathway. We find that the lower PM2.5 in the mitigation pathway (34.2% and 32.6%, respectively for RCP8.5 and RCP4.5 relative to the baseline emission pathway) would come at a cost of 0.3–0.5 °C additional warming due to the direct impact of aerosols. The premature mortality burden attributable to ambient PM2.5 exposure is expected to rise from 2010 to 2030, but 381,790 (5–95% confidence interval, CI 275,620–514,600) deaths can be averted following the mitigation emission pathway relative to the baseline emission pathway. Therefore, we conclude that given the expected large health benefit, the mitigation emission pathway is a reasonable tradeoff for India despite the meteorological response. However, India needs to act more aggressively as the World Health Organization (WHO) annual air quality guideline (10 µg m−3) would remain far off.


Author(s):  
James D. Johnston ◽  
Megan E. Hawks ◽  
Haley B. Johnston ◽  
Laurel A. Johnson ◽  
John D. Beard

Prior studies document a high prevalence of respiratory symptoms among brick workers in Nepal, which may be partially caused by non-occupational exposure to fine particulate matter (PM2.5) from cooking. In this study, we compared PM2.5 levels and 24 h trends in brick workers’ homes that used wood or liquefied petroleum gas (LPG) cooking fuel. PM2.5 filter-based and real-time nephelometer data were collected for approximately 24 h in homes and outdoors. PM2.5 was significantly associated with fuel type and location (p < 0.0001). Pairwise comparisons found significant differences between gas, indoor (geometric mean (GM): 79.32 μg/m3), and wood, indoor (GM: 541.14 μg/m3; p = 0.0002), and between wood, indoor, and outdoor (GM: 48.38 μg/m3; p = 0.0006) but not between gas, indoor, and outdoor (p = 0.56). For wood fuel homes, exposure peaks coincided with mealtimes. For LPG fuel homes, indoor levels may be explained by infiltration of ambient air pollution. In both wood and LPG fuel homes, PM2.5 levels exceeded the 24 h limit (25.0 µg/m3) proposed by the World Health Organization. Our findings suggest that increasing the adoption of LPG cookstoves and decreasing ambient air pollution in the Kathmandu valley will significantly lower daily PM2.5 exposures of brick workers and their families.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hedi Katre Kriit ◽  
Bertil Forsberg ◽  
Daniel Oudin Åström ◽  
Anna Oudin

Abstract Background Alzheimer’s disease (AD) and other dementias currently represent the fifth most common cause of death in the world, according to the World Health Organization, with a projected future increase as the proportion of the elderly in the population is growing. Air pollution has emerged as a plausible risk factor for AD, but studies estimating dementia cases attributable to exposure to fine particulate matter (PM2.5) air pollution and resulting monetary estimates are lacking. Methods We used data on average population-weighted exposure to ambient PM2.5 for the entire population of Sweden above 30 years of age. To estimate the annual number of dementia cases attributable to air pollution in the Swedish population above 60 years of age, we used the latest concentration response functions (CRF) between PM2.5 exposure and dementia incidence, based on ten longitudinal cohort studies, for the population above 60 years of age. To estimate the monetary burden of attributable cases, we calculated total costs related to dementia, including direct and indirect lifetime costs and intangible costs by including quality-adjusted life years (QALYs) lost. Two different monetary valuations of QALYs in Sweden were used to estimate the monetary value of reduced quality-of-life from two different payer perspectives. Results The annual number of dementia cases attributable to PM2.5 exposure was estimated to be 820, which represents 5% of the annual dementia cases in Sweden. Direct and indirect lifetime average cost per dementia case was estimated to correspond € 213,000. A reduction of PM2.5 by 1 μg/m3 was estimated to yield 101 fewer cases of dementia incidences annually, resulting in an estimated monetary benefit ranging up to 0.01% of the Swedish GDP in 2019. Conclusion This study estimated that 5% of annual dementia cases could be attributed to PM2.5 exposure, and that the resulting monetary burden is substantial. These findings suggest the need to consider airborne toxic pollutants associated with dementia incidence in public health policy decisions.


Ciencia Unemi ◽  
2018 ◽  
Vol 11 (27) ◽  
pp. 97-110
Author(s):  
Gloria Arcos-Medina ◽  
Freddy Armijos-Arcos ◽  
Mayra Alejandra Oñate-Andino ◽  
Danilo Pastor ◽  
Rubén Jerves-Cobo

El objetivo de este estudio es estimar el número de muertes por cáncer de pulmón  provocadas por la contaminación ambiental debida a la exposición de las personas a material particulado fino menor a 2.5 µm (PM2.5).  Para cumplir con este fin, se realizó un estudio con enfoque deductivo en el que se efectuaron simulaciones del modelo de evaluación de la morbilidad ambiental desarrollado por la Organización Mundial de la Salud.  Se evaluó la exposición de la población a la contaminación por PM2.5, basado en datos monitoreados en 12 estaciones de calidad de aire del Distrito Metropolitano de Quito en los grupos de población expuestas a PM2.5, y la incidencia  en la salud, estimada en la tasa de mortalidad en la población. Para el período de análisis 1990-2020 el total de muertes por neoplasias pulmonares es de 3058 ± 24 de los cuales 523 ± 32 se asociarían con las concentraciones de PM2.5; equivalente al 17.1%, CI=95% [15.9%-18.3%] y un Riesgo Relativo de 1.2046 [1.0688, 1.394]. Estos resultados fueron obtenidos a través de un software desarrollado para el efecto.   En conclusión, los valores obtenidos en la presente simulación se encuentran dentro del intervalo de confianza en relación a otros estudios similares.AbstractThe objective of this study is to simulate the estimation of the number of deaths from lung cancer caused by environmental pollution due to human exposure to fine particulate matter less than 2.5 µm (PM2.5). To achieve this goal, the study was conducted with deductive approach.  A simulation environmental model to assess morbidity developed by the World Health Organization was applied, based on population exposure to PM2.5 pollutant. This was done with data obtained from 12 air quality stations of the Metropolitan District of Quito and the population groups exposed to PM2.5, determining the impact on health.  The final simulation was calculated using the death rate in the population. For the period 1990-2020, the total number of deaths due to lung neoplasms was 3058 ± 24.  The number of these deaths associated to PM2.5 pollution was 523 ± 32, which supposes a Relative Risk of 523 ± 32, equivalent to  17.1%, CI=95% [15.9%-18.3%]. These results were obtained through software developed for this purpose. In conclusion, the values obtained in the present simulation are within the confidence interval of other similar studies.


2015 ◽  
Vol 6 ◽  
pp. 139-144
Author(s):  
T Sombo ◽  
A A Agbendeh ◽  
J O Tsor

The suspended fine particulate matter concentrations in Makurdi and Otukpo Metropolis were measured using Haz-Dust Sampler (AMS 95015). The measurements were carried out at major observed emission sources such as residential and traffic related sources. On the average, traffic- related sources recorded the highest concentration of suspended fine particulate matter in both metropolis with the highest concentration in Otukpo metropolis (594 : g/m ). Generally the measured values from all the sources are above World Health Organization (WHO) standards and National Air Quality Standard (150-230 : g/m 3 for 24 hrs). Results show that Otukpo metropolis has the highest fine particulate concentrations from residential and traffic related sources. In order to keep the suspended fine particulate concentrations from rising above prescribed standards, appropriate control measures are recommended.


2021 ◽  
Vol 249 ◽  
pp. 118249
Author(s):  
Mathilde Pascal ◽  
Vérène Wagner ◽  
Anna Alari ◽  
Magali Corso ◽  
Alain Le Tertre

2018 ◽  
Vol 69 ◽  
pp. 141-154 ◽  
Author(s):  
Nianliang Cheng ◽  
Yunting Li ◽  
Bingfen Cheng ◽  
Xin Wang ◽  
Fan Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document