scholarly journals Forecasting global atmospheric CO<sub>2</sub>

2014 ◽  
Vol 14 (21) ◽  
pp. 11959-11983 ◽  
Author(s):  
A. Agustí-Panareda ◽  
S. Massart ◽  
F. Chevallier ◽  
S. Boussetta ◽  
G. Balsamo ◽  
...  

Abstract. A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.

2014 ◽  
Vol 14 (9) ◽  
pp. 13909-13962 ◽  
Author(s):  
A. Agustí-Panareda ◽  
S. Massart ◽  
F. Chevallier ◽  
S. Boussetta ◽  
G. Balsamo ◽  
...  

Abstract. A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.


2020 ◽  
Author(s):  
Benjamin Fersch ◽  
Alfonso Senatore ◽  
Bianca Adler ◽  
Joël Arnault ◽  
Matthias Mauder ◽  
...  

&lt;p&gt;The land surface and the atmospheric boundary layer are closely intertwined with respect to the exchange of water, trace gases and energy. Nonlinear feedback and scale dependent mechanisms are obvious by observations and theories. Modeling instead is often narrowed to single compartments of the terrestrial system or bound to traditional viewpoints of definite scientific disciplines. Coupled terrestrial hydrometeorological modeling systems attempt to overcome these limitations to achieve a better integration of the processes relevant for regional climate studies and local area weather prediction. We examine the ability of the hydrologically enhanced version of the Weather Research and Forecasting Model (WRF-Hydro) to reproduce the regional water cycle by means of a two-way coupled approach and assess the impact of hydrological coupling with respect to a traditional regional atmospheric model setting. It includes the observation-based calibration of the hydrological model component (offline WRF-Hydro) and a comparison of the classic WRF and the fully coupled WRF-Hydro models both with identical calibrated parameter settings for the land surface model (Noah-MP). The simulations are evaluated based on extensive observations at the pre-Alpine Terrestrial Environmental Observatory (TERENO Pre-Alpine) for the Ammer (600 km&amp;#178;) and Rott (55 km&amp;#178;) river catchments in southern Germany, covering a five month period (Jun&amp;#8211;Oct 2016).&lt;/p&gt;&lt;p&gt;The sensitivity of 7 land surface parameters is tested using the &lt;em&gt;Latin-Hypercube One-factor-At-a-Time&lt;/em&gt; (LH-OAT) method and 6 sensitive parameters are subsequently optimized for 6 different subcatchments, using the Model-Independent &lt;em&gt;Parameter Estimation and Uncertainty Analysis software&lt;/em&gt; (PEST).&lt;/p&gt;&lt;p&gt;The calibration of the offline WRF-Hydro leads to Nash-Sutcliffe efficiencies between 0.56 and 0.64 and volumetric efficiencies between 0.46 and 0.81 for the six subcatchments. The comparison of classic WRF and fully coupled WRF-Hydro shows only tiny alterations for radiation and precipitation but considerable changes for moisture- and energy fluxes. By comparison with TERENO Pre-Alpine observations, the fully coupled model slightly outperforms the classic WRF with respect to evapotranspiration, sensible and ground heat flux, near surface mixing ratio, temperature, and boundary layer profiles of air temperature. The subcatchment-based water budgets show uniformly directed variations for evapotranspiration, infiltration excess and percolation whereas soil moisture and precipitation change randomly.&lt;/p&gt;


2020 ◽  
Vol 35 (4) ◽  
pp. 1427-1445
Author(s):  
Ewan Short

AbstractForecasters working for Australia’s Bureau of Meteorology (BoM) produce a 7-day forecast in two key steps: first they choose a model guidance dataset to base the forecast on, and then they use graphical software to manually edit these data. Two types of edits are commonly made to the wind fields that aim to improve how the influences of boundary layer mixing and land–sea-breeze processes are represented in the forecast. In this study the diurnally varying component of the BoM’s official wind forecast is compared with that of station observations and unedited model guidance datasets. Coastal locations across Australia over June, July, and August 2018 are considered, with data aggregated over three spatial scales. The edited forecast produces a lower mean absolute error than model guidance at the coarsest spatial scale (over 50 000 km2), and achieves lower seasonal biases over all spatial scales. However, the edited forecast only reduces errors or biases at particular times and locations, and rarely produces lower errors or biases than all model guidance products simultaneously. To better understand physical reasons for biases in the mean diurnal wind cycles, modified ellipses are fitted to the seasonally averaged diurnal wind temporal hodographs. Biases in the official forecast diurnal cycle vary with location for multiple reasons, including biases in the directions that sea breezes approach coastlines, amplitude biases, and disagreement in the relative contribution of sea-breeze and boundary layer mixing processes to the mean diurnal cycle.


2014 ◽  
Vol 14 (16) ◽  
pp. 23681-23709
Author(s):  
S. M. Miller ◽  
I. Fung ◽  
J. Liu ◽  
M. N. Hayek ◽  
A. E. Andrews

Abstract. Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM–LETKF" to quantify two aspects of the transport errors: error variances (standard deviations) and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation), depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological uncertainties manifest as persistent atmospheric transport biases appears to depend, at least in part, on the energy and stability of the boundary layer. Existing CO2 flux studies may be more likely to estimate inaccurate regional fluxes under those conditions.


2017 ◽  
Vol 56 (10) ◽  
pp. 2821-2844 ◽  
Author(s):  
Eun-Gyeong Yang ◽  
Hyun Mee Kim

AbstractIn this study, the East Asia Regional Reanalysis (EARR) is developed for the period 2013–14 and characteristics of the EARR are examined in comparison with ERA-Interim (ERA-I) reanalysis. The EARR is based on the Unified Model with 12-km horizontal resolution, which has been an operational numerical weather prediction model at the Korea Meteorological Administration since being adopted from the Met Office in 2011. Relative to the ERA-I, in terms of skill scores, the EARR performance for wind, temperature, relative humidity, and geopotential height improves except for mean sea level pressure, the lower-troposphere geopotential height, and the upper-air relative humidity. In a similar way, RMSEs of the EARR are smaller than those of ERA-I for wind, temperature, and relative humidity, except for the upper-air meridional wind and the upper-air relative humidity in January. With respect to the near-surface variables, the triple collocation analysis and the correlation coefficients confirm that EARR provides a much improved representation when compared with ERA-I. In addition, EARR reproduces the finescale features of near-surface variables in greater detail than ERA-I does, and the kinetic energy (KE) spectra of EARR agree more with the canonical atmospheric KE spectra than do the ERA-I KE spectra. On the basis of the fractions skill score, the near-surface wind of EARR is statistically significantly better simulated than that of ERA-I for all thresholds, except for the higher threshold at smaller spatial scales. Therefore, although special care needs to be taken when using the upper-air relative humidity from EARR, the near-surface variables of the EARR that were developed are found to be more accurate than those of ERA-I.


2019 ◽  
Vol 26 (3) ◽  
pp. 339-357 ◽  
Author(s):  
Jari-Pekka Nousu ◽  
Matthieu Lafaysse ◽  
Matthieu Vernay ◽  
Joseph Bellier ◽  
Guillaume Evin ◽  
...  

Abstract. Forecasting the height of new snow (HN) is crucial for avalanche hazard forecasting, road viability, ski resort management and tourism attractiveness. Météo-France operates the PEARP-S2M probabilistic forecasting system, including 35 members of the PEARP Numerical Weather Prediction system, where the SAFRAN downscaling tool refines the elevation resolution and the Crocus snowpack model represents the main physical processes in the snowpack. It provides better HN forecasts than direct NWP diagnostics but exhibits significant biases and underdispersion. We applied a statistical post-processing to these ensemble forecasts, based on non-homogeneous regression with a censored shifted Gamma distribution. Observations come from manual measurements of 24 h HN in the French Alps and Pyrenees. The calibration is tested at the station scale and the massif scale (i.e. aggregating different stations over areas of 1000 km2). Compared to the raw forecasts, similar improvements are obtained for both spatial scales. Therefore, the post-processing can be applied at any point of the massifs. Two training datasets are tested: (1) a 22-year homogeneous reforecast for which the NWP model resolution and physical options are identical to the operational system but without the same initial perturbations; (2) 3-year real-time forecasts with a heterogeneous model configuration but the same perturbation methods. The impact of the training dataset depends on lead time and on the evaluation criteria. The long-term reforecast improves the reliability of severe snowfall but leads to overdispersion due to the discrepancy in real-time perturbations. Thus, the development of reliable automatic forecasting products of HN needs long reforecasts as homogeneous as possible with the operational systems.


2018 ◽  
Vol 33 (2) ◽  
pp. 599-607 ◽  
Author(s):  
John R. Lawson ◽  
John S. Kain ◽  
Nusrat Yussouf ◽  
David C. Dowell ◽  
Dustan M. Wheatley ◽  
...  

Abstract The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service warnings for thunderstorm-induced hazards. An early prototype of the WoF prediction system is the National Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36 ensemble members with varied initial conditions and parameterization suites. In the present study, real-time 3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh (HRRR, version 1) and an upgraded, experimental configuration of the HRRR. All three model systems were run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This improvement diminishes with forecast lead time. The experimental HRRR model, which became operational as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.


1992 ◽  
Vol 40 (5) ◽  
pp. 697 ◽  
Author(s):  
MR Raupach ◽  
OT Denmead ◽  
FX Dunin

We describe relationships between atmospheric CO2 concentration variations and CO2 source-sink distributions, at two important scales between the single plant and the whole earth: the vegetation canopy and the atmospheric planetary boundary layer. For both these scales, it is shown how knowledge of turbulence and scalar dispersion can be applied to infer CO2 source-sink distributions or fluxes from concentration measurements. At the canopy scale, the turbulent transfer of CO2 and other scalars is non-diffusive close to any point source or sink in the canopy, but diffusive at greater distances. This distinction leads to a physically tenable description of turbulent transfer, and thence to an 'inverse method' for finding the vertical profiles of sources and sinks in the canopy from measured concentration profiles. The method is tested with data from a wheat crop. At the scale of the planetary boundary layer, we consider the daily CO2 concentration drawdown (the depression of the near-surface CO2 concentration below the free-atmosphere value) of typically 20-40 ppm. This is determined by both the regionally averaged CO2 uptake at the surface and the growth of the daytime convective boundary layer (CBL). It is shown that, for a column of air which fills the CBL and is moved across the landscape by the mean wind, the net cumulative surface CO2 flux (in mol m-2) is given to a good approximation by h(t)[Cm(t) - C+]/V, where h(t) is CBL depth, Cm(t) the CO2 concentration in the CBL column in mol mol-1, C+ the concentration above the CBL, V the molar volume and time t is measured from the time at which Cm = C+ in the morning, typically about 0800 hours local time. The resulting CO2 flux estimates are regionally averaged over the trajectory followed by the column. This 'CBL budget method' for inferring surface fluxes is compared with direct measurements of CO2 fluxes, with satisfactory results. The technique has application to scalars other than CO2.


2012 ◽  
Vol 140 (9) ◽  
pp. 3017-3038 ◽  
Author(s):  
Anna C. Fitch ◽  
Joseph B. Olson ◽  
Julie K. Lundquist ◽  
Jimy Dudhia ◽  
Alok K. Gupta ◽  
...  

Abstract A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.


2015 ◽  
Vol 15 (12) ◽  
pp. 6775-6788 ◽  
Author(s):  
F. Hourdin ◽  
M. Gueye ◽  
B. Diallo ◽  
J.-L. Dufresne ◽  
J. Escribano ◽  
...  

Abstract. We investigate how the representation of the boundary layer in a climate model impacts the representation of the near-surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated.


Sign in / Sign up

Export Citation Format

Share Document