scholarly journals Retrieval of ammonia from ground-based FTIR solar spectra

2015 ◽  
Vol 15 (22) ◽  
pp. 12789-12803 ◽  
Author(s):  
E. Dammers ◽  
C. Vigouroux ◽  
M. Palm ◽  
E. Mahieu ◽  
T. Warneke ◽  
...  

Abstract. We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier transform infrared (FTIR) observations. Observations from Bremen (53.10° N, 8.85° E), Lauder (45.04° S, 169.68° E), Réunion (20.9° S, 55.50° E) and Jungfraujoch (46.55° N, 7.98° E) were used to illustrate the capabilities of the method. NH3 mean total columns ranging 3 orders of magnitude were obtained, with higher values at Bremen (mean of 13.47 × 1015 molecules cm−2) and lower values at Jungfraujoch (mean of 0.18 × 1015 molecules cm−2). In conditions with high surface concentrations of ammonia, as in Bremen, it is possible to retrieve information on the vertical gradient, as two layers can be distinguished. The retrieval there is most sensitive to ammonia in the planetary boundary layer, where the trace gas concentration is highest. For conditions with low concentrations, only the total column can be retrieved. Combining the systematic and random errors we have a mean total error of 26 % for all spectra measured at Bremen (number of spectra (N) = 554), 30 % for all spectra from Lauder (N = 2412), 25 % for spectra from Réunion (N = 1262) and 34 % for spectra measured at Jungfraujoch (N = 2702). The error is dominated by the systematic uncertainties in the spectroscopy parameters. Station-specific seasonal cycles were found to be consistent with known seasonal cycles of the dominant ammonia sources in the station surroundings. The developed retrieval methodology from FTIR instruments provides a new way of obtaining highly time-resolved measurements of ammonia burdens. FTIR-NH3 observations will be useful for understanding the dynamics of ammonia concentrations in the atmosphere and for satellite and model validation. It will also provide additional information to constrain the global ammonia budget.

2015 ◽  
Vol 15 (16) ◽  
pp. 23279-23315
Author(s):  
E. Dammers ◽  
C. Vigouroux ◽  
M. Palm ◽  
E. Mahieu ◽  
T. Warneke ◽  
...  

Abstract. We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier Transform InfraRed (FTIR) observations. Observations from Bremen (53.10° N, 8.85° E), Lauder (45.04° S, 169.68° E), Reunion (20.9° S, 55.50° E) and Jungfraujoch (46.55° N, 7.98° E) were used to illustrate the capabilities of the method. NH3 mean total columns ranging three orders of magnitude were obtained with higher values at Bremen (mean of 13.47 × 1015 molecules cm−2) to the lower values at Jungfraujoch (mean of 0.18 × 1015 molecules cm−2). In conditions with high surface concentrations of ammonia, as in Bremen, it is possible to retrieve information on the vertical gradient as two layers can be discriminated. The retrieval there is most sensitive to ammonia in the planetary boundary layer, where the trace gas concentration is highest. For conditions with low concentrations only the total column can be retrieved. Combining the systematic and random errors we have a mean total error of 26 % for all spectra measured at Bremen (Number of spectra (N) = 554), 30 % for all spectra from Lauder (N =2412), 25 % for spectra from Reunion (N =1262) and 34 % for spectra measured at Jungfraujoch (N =2702). The error is dominated by the systematic uncertainties in the spectroscopy parameters. Station specific seasonal cycles were found to be consistent with known seasonal cycles of the dominant ammonia sources in the station surroundings. The developed retrieval methodology from FTIR-instruments provides a new way to obtain highly time-resolved measurements of ammonia burdens. FTIR-NH3 observations will be useful for understanding the dynamics of ammonia concentrations in the atmosphere and for satellite and model validation. It will also provide additional information to constrain the global ammonia budget.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


2021 ◽  
Vol 7 (14) ◽  
pp. eabe9765
Author(s):  
Daniel I. Herman ◽  
Chinthaka Weerasekara ◽  
Lindsay C. Hutcherson ◽  
Fabrizio R. Giorgetta ◽  
Kevin C. Cossel ◽  
...  

Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.


Author(s):  
M Abu-Qudais ◽  
D. B. Kittelson

The purpose of this research was to investigate the influence of the in-cylinder surfaces on the net emission of the particulate matter in the exhaust of a single cylinder, diesel engine. In order to obtain this information, time-resolved sampling was done to characterize the particulate matter emitted in the engine exhaust. A rotating probe sampled the free exhaust plume once each engine cycle. The rotation of the probe was synchronized with the engine cycle in such a way that the samples could be taken at any predetermined crank angle degree window. The sampling probe was designed for isokinetic sampling in order to obtain reliable results. To characterize the exhaust particulate in real time, a filter for mass concentration measurements was used. The results showed about 45 per cent higher mass concentrations as well as particles of larger diameter emitted during blowdown than late in the displacement phase of the exhaust stroke. This suggests that high in-cylinder shear rates and velocities which are associated with the blowdown process, cause the deposited soot to be re-entrained from the surfaces of the combustion chamber, where re-entrainment is favoured by conditions of high surface shear. A mathematical model to predict the amount of soot re-entrained from the cylinder walls is presented. This model is based on information presented in the literature along with the results of the time-resolved measurements of mass concentration. This model supported the hypothesis of soot deposition during the combustion process, with subsequent re-entrainment during the blowdown process of the exhaust stroke.


2008 ◽  
Vol 8 (12) ◽  
pp. 3081-3092 ◽  
Author(s):  
S. S. Kulawik ◽  
K. W. Bowman ◽  
M. Luo ◽  
C. D. Rodgers ◽  
L. Jourdain

Abstract. Non-linear maximum a posteriori (MAP) estimates of atmospheric profiles from the Tropospheric Emission Spectrometer (TES) contains a priori information that may vary geographically, which is a confounding factor in the analysis and physical interpretation of an ensemble of profiles. One mitigation strategy is to transform profile estimates to a common prior using a linear operation thereby facilitating the interpretation of profile variability. However, this operation is dependent on the assumption of not worse than moderate non-linearity near the solution of the non-linear estimate. The robustness of this assumption is tested by comparing atmospheric retrievals from the Tropospheric Emission Spectrometer processed with a uniform prior with those processed with a variable prior and converted to a uniform prior following the non-linear retrieval. Linearly converting the prior following a non-linear retrieval is shown to have a minor effect on the results as compared to a non-linear retrieval using a uniform prior when compared to the expected total error, with less than 10% of the change in the prior ending up as unbiased fluctuations in the profile estimate results.


Geophysics ◽  
1986 ◽  
Vol 51 (9) ◽  
pp. 1725-1735 ◽  
Author(s):  
J. W. Paine

The vertical gradient of a one‐dimensional magnetic field is known to be a useful aid in interpretation of magnetic data. When the vertical gradient is required but has not been measured, it is necessary to approximate the gradient using the available total‐field data. An approximation is possible because a relationship between the total field and the vertical gradient can be established using Fourier analysis. After reviewing the theoretical basis of this relationship, a number of methods for approximating the vertical gradient are derived. These methods fall into two broad categories: methods based on the discrete Fourier transform, and methods based on discrete convolution filters. There are a number of choices necessary in designing such methods, each of which will affect the accuracy of the computed values in differing, and sometimes conflicting, ways. A comparison of the spatial and spectral accuracy of the methods derived here shows that it is possible to construct a filter which maintains a reasonable balance between the various components of the total error. Further, the structure of this filter is such that it is also computationally more efficient than methods based on fast Fourier transform techniques. The spacing and width of the convolution filter are identified as the principal factors which influence the accuracy and efficiency of the method presented here, and recommendations are made on suitable choices for these parameters.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 6523-6523
Author(s):  
R. W. Ford ◽  
R. R. Ford ◽  
K. Zhou

6523 A retrospective exploratory study of the variability of radiologists’ measurements in a selected subgroup of subjects enrolled in a clinical trial Background: Independent centralized review of imaging studies is an established means of validating data used in support of corporate ‘go-no go‘ decisions, regulatory approval, and post marketing claims. Despite best efforts at standardizing this process using the Response Evaluation Criteria in Solid Tumors (RECIST), there will be inherent differences in radiologic measurements. To define a concise value for the variation between a specific set of radiologists, the following study was performed. Methods: An experienced radiologist and a research intern reviewed digital Computerized Tomographic (CT) scans from 31 subjects to identify 150 primary and metastatic tumors. Tumors were categorized into 4 categories. [Category (Cat.) 1 - Defined Edge/Radially Symmetric, Cat. 2 - Defined Edge/Irregular Shape, Cat. 3 - Blurred Edge/Radially Symmetric, Cat. 4 - Blurred Edge/Irregular Shape] Fifteen radiologists independently measured each tumor. Mixed effects models controlling for different tumors were used to assess the variance. Results Overall, the between reader variations accounted for 4.15% percent of total errors for the length. The respective between reader and the random errors are 0.32 (95% CI: 0.14, 0.77) and 7.51 (95%CI: 7.08, 8.01). The data shows that the variances are smallest for category 1 tumors (total error: 1.45) and largest for category 4 tumors (total error: 20.79). The total error for categories 2 and 3 are listed in Table 1 below. Conclusions The (low reader error) / (total error) verifies that the radiologists were only responsible for a small portion of the total error, and suggests these 15 radiologists measuring a tumor will be comparable to one of these radiologists measuring the tumor many times. No significant financial relationships to disclose. [Table: see text]


2012 ◽  
Vol 5 (5) ◽  
pp. 7641-7673 ◽  
Author(s):  
R. Sinreich ◽  
A. Merten ◽  
L. Molina ◽  
R. Volkamer

Abstract. We present a novel parameterization method to convert Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) differential Slant Column Densities (dSCDs) into near-surface box averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, does not require a-priori assumptions about the trace gas vertical distribution and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by MAX-DOAS measurements at different elevation angles, and by LP-DOAS. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near surface emission. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way and emphasizes the need of vertically resolved measurements.


2016 ◽  
Author(s):  
Michael Reinwald ◽  
Moritz Bernauer ◽  
Heiner Igel ◽  
Stefanie Donner

Abstract. With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve the seismic inverse problem. In this paper, we focus on the question, whether finite source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 3-component translational sensors (classic seismometers) with those obtained with 22 6-component sensors (with additional 3-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component (three velocity and three rotation rate) inversions with a random distribution of receivers. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing half the sensors) but statistically some source properties are almost always better resolved. We assume that this can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is even higher for the normal fault. This indicates that the inversion benefits from the additional information provided by the horizontal rotation rates, i.e. information about the vertical displacement gradient.


Sign in / Sign up

Export Citation Format

Share Document