scholarly journals OClO and BrO observations in the volcanic plume of Mt. Etna – implications on the chemistry of chlorine and bromine species in volcanic plumes

2015 ◽  
Vol 15 (10) ◽  
pp. 5659-5681 ◽  
Author(s):  
J. Gliß ◽  
N. Bobrowski ◽  
L. Vogel ◽  
D. Pöhler ◽  
U. Platt

Abstract. Spatial and temporal profiles of chlorine dioxide (OClO), bromine monoxide (BrO) and sulfur dioxide (SO2) of the volcanic plume at Mt. Etna, Italy, were investigated in September 2012 using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). OClO was detected in 119 individual measurements covering plume ages up to 6 min. BrO could be detected in 452 spectra up to 23 min downwind. The retrieved slant column densities (SCDs) reached maximum values of 2.0 × 1014 molecules cm-2 (OClO) and 1.1 × 1015 molecules cm-2 (BrO). Mean mixing ratios of BrO and OClO were estimated assuming a circular plume cross section. Furthermore, ClO mixing ratios were derived directly from the BrO and OClO-SCDs. Average abundances of BrO = 1.35 ppb, OClO = 300 ppt and ClO = 139 ppt were found in the young plume (plume age τ < 4 min) with peak values of 2.7 ppb (BrO), 600 ppt (OClO) and 235 ppt (ClO) respectively. The chemical evolution of BrO and OClO in the plume was investigated in great detail by analysing the OClO/SO2 and BrO/SO2 ratios as a function of plume age τ. A marked increase of both ratios was observed in the young plume (τ < 142 s) and a levelling off at larger plume ages showing mean SO2 ratios of 3.17 × 10-5 (OClO/SO2) and 1.65 × 10-4 (BrO/SO2). OClO was less abundant in the plume compared to BrO with a mean OClO/BrO ratio of 0.16 at plume ages exceeding 3 min. A measurement performed in the early morning at low solar radiances revealed BrO/SO2 and OClO/SO2 ratios increasing with time. This observation substantiates the importance of photochemistry regarding the formation of BrO and OClO in volcanic plumes. These findings support the current understanding of the underlying chemistry, namely, that BrO is formed in an autocatalytic, heterogeneous reaction mechanism (in literature often referred to as "bromine explosion") and that OClO is formed in the reaction of OClO with BrO. These new findings, especially the very detailed observation of the BrO and OClO formation in the young plume, were used to infer the prevailing Cl-atom concentrations in the plume. Relatively small values ranging from [Cl] = 2.5 × 106 cm-3 (assuming 80 ppb background O3) to [Cl] = 2.0 × 108 cm-3 (at 1 ppb O3) were calculated at plume ages of about 2 min. Based on these Cl abundances, a potential – chlorine-induced – depletion of tropospheric methane (CH4) in the plume was investigated. CH4 lifetimes between 14 h (at 1 ppb O3) and 47 days (at 80 ppb O3) were derived. While these lifetimes are considerably shorter than the atmospheric lifetime of CH4, the impact of gaseous chlorine on the CH4 budget in the plume environment should nevertheless be relatively small due to plume dispersion (decreasing Cl concentrations) and ongoing mixing of the plume with the surrounding atmosphere (replenishing O3 and CH4). In addition, all spectra were analysed for signatures of IO, OIO and BrO. None of these species could be detected. Upper limits for IO/SO2, OIO/SO2 and OBrO/SO2 are 1.8 × 10-6, 2.0 × 10-5 and 1.1 × 10-5 respectively.

2014 ◽  
Vol 14 (18) ◽  
pp. 25213-25280
Author(s):  
J. Gliß ◽  
N. Bobrowski ◽  
L. Vogel ◽  
U. Platt

Abstract. Spatial and temporal profiles of chlorine dioxide (OClO), bromine monoxide (BrO) and sulphur dioxide (SO2) were measured in the plume of Mt. Etna, Italy, in September 2012 using Multi-Axis-Differential-Optical-Absorption-Spectroscopy (MAX-DOAS). OClO (BrO) was detected in 119 (452) individual measurements covering plume ages up to 6 (23) minutes. The retrieved slant column densities (SCDs) reached values up to 2.0 × 1014 molecules cm−2 (OClO) and 1.1 × 1015 molecules cm−2 (BrO). In addition, the spectra were analysed for signatures of IO, OIO and OBrO, none of these species could be detected. The corresponding detection limits for IO / SO2, OIO / SO2 and OBrO / SO2 were 1.8 × 10−6, 2.0 × 10−5 and 1.1 × 10−5 respectively. The measurements were performed at plume ages (τ) from zero to 23 min downwind the emission source. The chemical variability of BrO and OClO in the plume was studied analysing the OClO / SO2 and BrO / SO2-ratio. A marked increase of both ratios was observed in the young plume (τ < 3 min) and a levelling off at larger plume ages (τ > 3 min) with mean abundances of 3.17 × 10−5 (OClO / SO2), 1.55 × 10−4 (BrO / SO2) and 0.16 (OClO / BrO). Furthermore, enhanced BrO/SO2-ratios were found at the plume edges (by ~30–37%) and a strong indication of enhanced OClO / SO2-ratios as well (~10–250%). A measurement performed in the early morning (05:20–06:20 UTC, sunrise: 04:40 UTC) showed an BrO / SO2-ratio increasing with time until 05:35 UTC and a constant ratio afterwards. Observing this increase was only possible due to a correction for stratospheric BrO signals in the plume spectra. The corresponding OClO / SO2-ratio showed a similar trend stabilising around 06:13 UTC, approximately 40 min later than BrO. This is another strong indication for the photochemical nature of the reactions involved in the formation of oxidised halogens in volcanic plumes. In particular, these findings support the current understanding of the underlying chemistry, namely, that BrO is formed in an autocatalytic reaction mechanism in literature often referred to as "bromine explosion" and that OClO is formed in the "BrO + ClO"-reaction. BrO and OClO concentrations were estimated from the measured SCDs assuming a circular plume shape. In addition, mixing ratios of ClO were determined from the retrieved OClO and BrO-SCDs assuming chemical equilibrium between formation of OClO (BrO + ClO) and its destruction (photolysis). Mean abundances in the young plume (τ<4 min) were BrO = 1.35 ppb, OClO = 300 ppt and ClO = 139 ppt with peak values of 600 ppt (OClO), 2.7 ppb (BrO) and 235 ppt (ClO) respectively. The prevailing Cl-atom concentrations in the plume could be estimated from the rate of increase of OClO and BrO in the young plume and the determined ClO and OClO concentrations. Values between 5.1 × 106 cm−3 (at 40 ppb O3) and 2.1 × 108 cm−3 (at 1 ppb O3) were found. Based on that, a potential – chlorine induced – depletion of tropospheric methane (CH4) in the plume was investigated. CH4-lifetimes between 13 h (at 1 ppb O3) and 23 days (at 40 ppb O3) were found. These are considerably small compared to the atmospheric lifetime of CH4. However, the impact of gaseous chlorine on the CH4-budget in the plume environment was assessed to be relatively small, mainly due to plume dispersion (decrease of Cl number densities) and permanent mixing of the plume with the surrounding atmosphere (net supply of O3 and CH4).


2010 ◽  
Vol 10 (12) ◽  
pp. 30129-30170
Author(s):  
K. W. Wong ◽  
H.-J. Oh ◽  
B. Lefer ◽  
B. Rappenglück ◽  
J. Stutz

Abstract. Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO, followed by traffic emission. Aerosol did not play an important role in HONO formation. Although ground deposition was also a major removal pathway of HONO, net HONO production at the ground was the main source of HONO in our model studies. Sensitivity studies showed that in the stable NBL, net HONO production at the ground tends to increase with faster vertical mixing and stronger emission. Vertical transport was found to be the dominant source of HONO aloft.


2011 ◽  
Vol 11 (8) ◽  
pp. 3595-3609 ◽  
Author(s):  
K. W. Wong ◽  
H.-J. Oh ◽  
B. L. Lefer ◽  
B. Rappenglück ◽  
J. Stutz

Abstract. Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1–2 and 7–8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO, followed by traffic emission. Aerosol did not play an important role in HONO formation. Although ground deposition was also a major removal pathway of HONO, net HONO production at the ground was the main source of HONO in our model studies. Sensitivity studies showed that in the stable NBL, net HONO production at the ground tends to increase with faster vertical mixing and stronger NOx emission. Vertical transport was found to be the dominant source of HONO aloft.


2015 ◽  
Vol 57 ◽  
Author(s):  
Massimo Aranzulla ◽  
Flavio Cannavò ◽  
Simona Scollo

<p>The detection of volcanic plumes produced during explosive eruptions is important to improve our understanding on dispersal processes and reduce risks to aviation operations. The ability of Global Position-ing System (GPS) to retrieve volcanic plumes is one of the new challenges of the last years in volcanic plume detection. In this work, we analyze the Signal to Noise Ratio (SNR) data from 21 permanent stations of the GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, that are located on the Mt. Etna (Italy) flanks. Being one of the most explosive events since 2011, the eruption of November 23, 2013 was chosen as a test-case. Results show some variations in the SNR data that can be correlated with the presence of an ash-laden plume in the atmosphere. Benefits and limitations of the method are highlighted.</p>


2018 ◽  
Vol 11 (11) ◽  
pp. 6289-6307 ◽  
Author(s):  
Charles J. Vernon ◽  
Ryan Bolt ◽  
Timothy Canty ◽  
Ralph A. Kahn

Abstract. The dispersion of particles from wildfires, volcanic eruptions, dust storms, and other aerosol sources can affect many environmental factors downwind, including air quality. Aerosol injection height is one source attribute that mediates downwind dispersion, as wind speed and direction can vary dramatically with elevation. Using plume heights derived from space-based, multi-angle imaging, we examine the impact of initializing plumes in the NOAA Air Resources Laboratory's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model with satellite-measured vs. nominal (model-calculated or VAAC-reported) injection height on the simulated dispersion of six large aerosol plumes. When there are significant differences in nominal vs. satellite-derived particle injection heights, especially if both heights are in the free troposphere or if one injection height is within the planetary boundary layer (PBL) and the other is above the PBL, differences in simulation results can arise. In the cases studied with significant nominal vs. satellite-derived injection height differences, the HYSPLIT model can represent plume evolution better, relative to independent satellite observations, if the injection height in the model is constrained by hyper-stereo satellite retrievals.


2014 ◽  
Vol 7 (2) ◽  
pp. 2581-2650 ◽  
Author(s):  
L. Grellier ◽  
V. Marécal ◽  
B. Josse ◽  
P. D. Hamer ◽  
T. J. Roberts ◽  
...  

Abstract. Volcanoes are a known source of halogens to the atmosphere. HBr volcanic emissions lead rapidly to the formation of BrO within volcanic plumes as shown by recent work based on observations and models. BrO, having a longer residence time in the atmosphere than HBr, is expected to have a significant impact on tropospheric chemistry, at least at the local and regional scales. The objective of this paper is to prepare a framework that will allow 3-D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. This work is based on a 1-D configuration of the chemistry transport model MOCAGE whose low computational cost allows us to perform a large set of sensitivity studies. This paper studies the Etna eruption on the 10 May 2008 that took place just before night time. Adaptations are made to MOCAGE to be able to produce the chemistry occurring within the volcanic plume. A simple sub-grid scale parameterization of the volcanic plume is implemented and tested. The use of this parameterization in a 0.5° × 0.5° configuration (typical regional resolution) has an influence on the partitioning between the various bromine compounds both during the eruption period and also during the night period immediately afterwards. During the day after the eruption, simulations both with and without parameterizations give very similar results that are consistent with the tropospheric column of BrO and SO2 in the volcanic plume derived from GOME-2 observations. Tests have been performed to evaluate the sensitivity of the results to the mixing between ambient air and the magmatic air at very high temperature at the crater vent that modifies the composition of the emission, and in particular the sulphate aerosol content that is key compound in the BrO production. Simulations show that the plume chemistry is not very sensitive to the assumptions used for the mixing parameter (relative quantity of ambient air mixed with magmatic air in the mixture) that is not well known. This is because there is no large change in the compounds limiting/favouring the BrO production in the plume. The impact of the model grid resolution is also tested in view of future 3-D-simulations at the global scale. A dilution of the emitted gases and aerosols is observed when using the typical global resolution (2°) as compared to a typical regional resolution (0.5°), as expected. Taking this into account, the results of the 2° resolution simulations are consistent with the GOME-2 observations. In general the simulations at 2° resolution are less efficient at producing BrO after the emission both with and without the subgrid-scale parameterization. The differences are mainly due to an interaction between concentration effects than stem from using a reduced volume in the 0.5° resolution combined with second order rate kinetics. The last series of tests were on the mean radius assumed for the sulphate aerosols that indirectly impacts the production of BrO by heterogeneous reactions. The simulations show that the BrO production is sensitive to this parameter with a stronger production when smaller aerosols are assumed. These results will be used to guide the implementation of volcanic halogen emissions in the 3-D configuration of MOCAGE.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 548 ◽  
Author(s):  
David Jean Du Preez ◽  
Hassan Bencherif ◽  
Nelson Bègue ◽  
Lieven Clarisse ◽  
Rebecca F. Hoffman ◽  
...  

Volcanic plumes can be transported across vast distances and can have an impact on solar ultraviolet radiation (UVR) reaching the surface due to the scattering and absorption caused by aerosols. The dispersion of the volcanic plume from the Puyehue-Cordón Caulle volcanic complex (PCCVC) eruption was investigated to determine the effect on aerosol loading at Cape Point, South Africa. The eruption occurred on 4 June 2011 and resulted in a plume reaching a height of between 9 and 12 km and was dispersed across the Southern Hemisphere. Satellite sulphur dioxide (SO2) observations and a dispersion model showed low concentrations of SO2 at the secondary site. However, satellite observations of volcanic ash and ground-based aerosol measurements did show increases between 10 and 20 June 2011 at the secondary site. Furthermore, there was good agreement with the dispersion model results and observations from satellites with most of the plume located between latitudes 40°–60° South.


2015 ◽  
Vol 15 (22) ◽  
pp. 33731-33754
Author(s):  
T. Wegner ◽  
M. C. Pitts ◽  
L. R. Poole ◽  
I. Tritscher ◽  
J.-U. Grooß ◽  
...  

Abstract. In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of Polar Stratospheric Clouds (PSC). These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSC indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSCs and the observed chlorine activation can only be explained by an increase in surface area density due to PSCs. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area.


2014 ◽  
Vol 7 (10) ◽  
pp. 3459-3485 ◽  
Author(s):  
S. General ◽  
D. Pöhler ◽  
H. Sihler ◽  
N. Bobrowski ◽  
U. Frieß ◽  
...  

Abstract. Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).


2020 ◽  
Vol 13 (9) ◽  
pp. 5087-5116 ◽  
Author(s):  
Yang Wang ◽  
Arnoud Apituley ◽  
Alkiviadis Bais ◽  
Steffen Beirle ◽  
Nuria Benavent ◽  
...  

Abstract. We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3×1015 molec. cm−2, which is half of the typical random discrepancy of 0.6×1015 molec. cm−2. For a typical high HONO delta SCD of 2×1015 molec. cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ∼±0.5×1014 molec. cm−2 and ∼±0.1 ppb (typically ∼20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ∼5 %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ∼3×1014 molec. cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ∼0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to represent the ambient HONO profiles well.


Sign in / Sign up

Export Citation Format

Share Document