scholarly journals Towards a representation of halogen chemistry within volcanic plumes in a chemistry transport model

2014 ◽  
Vol 7 (2) ◽  
pp. 2581-2650 ◽  
Author(s):  
L. Grellier ◽  
V. Marécal ◽  
B. Josse ◽  
P. D. Hamer ◽  
T. J. Roberts ◽  
...  

Abstract. Volcanoes are a known source of halogens to the atmosphere. HBr volcanic emissions lead rapidly to the formation of BrO within volcanic plumes as shown by recent work based on observations and models. BrO, having a longer residence time in the atmosphere than HBr, is expected to have a significant impact on tropospheric chemistry, at least at the local and regional scales. The objective of this paper is to prepare a framework that will allow 3-D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. This work is based on a 1-D configuration of the chemistry transport model MOCAGE whose low computational cost allows us to perform a large set of sensitivity studies. This paper studies the Etna eruption on the 10 May 2008 that took place just before night time. Adaptations are made to MOCAGE to be able to produce the chemistry occurring within the volcanic plume. A simple sub-grid scale parameterization of the volcanic plume is implemented and tested. The use of this parameterization in a 0.5° × 0.5° configuration (typical regional resolution) has an influence on the partitioning between the various bromine compounds both during the eruption period and also during the night period immediately afterwards. During the day after the eruption, simulations both with and without parameterizations give very similar results that are consistent with the tropospheric column of BrO and SO2 in the volcanic plume derived from GOME-2 observations. Tests have been performed to evaluate the sensitivity of the results to the mixing between ambient air and the magmatic air at very high temperature at the crater vent that modifies the composition of the emission, and in particular the sulphate aerosol content that is key compound in the BrO production. Simulations show that the plume chemistry is not very sensitive to the assumptions used for the mixing parameter (relative quantity of ambient air mixed with magmatic air in the mixture) that is not well known. This is because there is no large change in the compounds limiting/favouring the BrO production in the plume. The impact of the model grid resolution is also tested in view of future 3-D-simulations at the global scale. A dilution of the emitted gases and aerosols is observed when using the typical global resolution (2°) as compared to a typical regional resolution (0.5°), as expected. Taking this into account, the results of the 2° resolution simulations are consistent with the GOME-2 observations. In general the simulations at 2° resolution are less efficient at producing BrO after the emission both with and without the subgrid-scale parameterization. The differences are mainly due to an interaction between concentration effects than stem from using a reduced volume in the 0.5° resolution combined with second order rate kinetics. The last series of tests were on the mean radius assumed for the sulphate aerosols that indirectly impacts the production of BrO by heterogeneous reactions. The simulations show that the BrO production is sensitive to this parameter with a stronger production when smaller aerosols are assumed. These results will be used to guide the implementation of volcanic halogen emissions in the 3-D configuration of MOCAGE.

2007 ◽  
Vol 7 (24) ◽  
pp. 6119-6129 ◽  
Author(s):  
G. Dufour ◽  
S. Szopa ◽  
D. A. Hauglustaine ◽  
C. D. Boone ◽  
C. P. Rinsland ◽  
...  

Abstract. The distribution and budget of oxygenated organic compounds in the atmosphere and their impact on tropospheric chemistry are still poorly constrained. Near-global space-borne measurements of seasonally resolved upper tropospheric profiles of methanol (CH3OH) by the ACE Fourier transform spectrometer provide a unique opportunity to evaluate our understanding of this important oxygenated organic species. ACE-FTS observations from March 2004 to August 2005 period are presented. These observations reveal the pervasive imprint of surface sources on upper tropospheric methanol: mixing ratios observed in the mid and high latitudes of the Northern Hemisphere reflect the seasonal cycle of the biogenic emissions whereas the methanol cycle observed in the southern tropics is highly influenced by biomass burning emissions. The comparison with distributions simulated by the state-of-the-art global chemistry transport model, LMDz-INCA, suggests that: (i) the background methanol (high southern latitudes) is correctly represented by the model considering the measurement uncertainties; (ii) the current emissions from the continental biosphere are underestimated during spring and summer in the Northern Hemisphere leading to an underestimation of modelled upper tropospheric methanol; (iii) the seasonal variation of upper tropospheric methanol is shifted to the fall in the model suggesting either an insufficient destruction of CH3OH (due to too weak chemistry and/or deposition) in fall and winter months or an unfaithful representation of transport; (iv) the impact of tropical biomass burning emissions on upper tropospheric methanol is rather well reproduced by the model. This study illustrates the potential of these first global profile observations of oxygenated compounds in the upper troposphere to improve our understanding of their global distribution, fate and budget.


2017 ◽  
Author(s):  
Daniel R. Moon ◽  
Giorgio S. Taverna ◽  
Clara Anduix-Canto ◽  
Trevor Ingham ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RH) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 % to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that by injecting the amount of TiO2 required to achieve the same cooling effect as the Mt. Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.


2010 ◽  
Vol 10 (16) ◽  
pp. 7763-7773 ◽  
Author(s):  
X. Yang ◽  
J. A. Pyle ◽  
R. A. Cox ◽  
N. Theys ◽  
M. Van Roozendael

Abstract. In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. However, neither the exact source of bromine nor the mechanism for sustaining the observed high BrO concentrations is completely understood. Here, by considering the production of sea salt aerosol from snow lying on sea ice during blowing snow events and the subsequent release of bromine, we successfully simulate the BEs using a global chemistry transport model. We find that heterogeneous reactions play an important role in sustaining a high fraction of the total inorganic bromine as BrO. We also find that emissions of bromine associated with blowing snow contribute significantly to BrO at mid-latitudes. Modeled tropospheric BrO columns generally compare well with the tropospheric BrO columns retrieved from the GOME satellite instrument (Global Ozone Monitoring Experiment). The additional blowing snow bromine source, identified here, reduces modeled high latitude lower tropospheric ozone amounts by up to an average 8% in polar spring.


2016 ◽  
Vol 16 (2) ◽  
pp. 759-776 ◽  
Author(s):  
V. Matthias ◽  
A. Aulinger ◽  
A. Backes ◽  
J. Bieser ◽  
B. Geyer ◽  
...  

Abstract. Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were investigated with the CMAQ chemistry transport model for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5 %, respectively, by 2030 if no regulation for further emission reductions is implemented in the North Sea area. PM2.5 will decrease slightly because the sulfur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from newly built ships.


2012 ◽  
Vol 12 (8) ◽  
pp. 19371-19421 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The adoption of H2 internal combustion engines decreases tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and decreases those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States are expected to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector is adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic particularly in megacities with severe air-quality problems that are exacerbating.


2021 ◽  
Author(s):  
Sanghee Han ◽  
Myoseon Jang

Abstract. The secondary organic aerosol (SOA) formation from photooxidation of gasoline vapor was simulated by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which predicted SOA growth via multiphase reactions of hydrocarbons. The Carbon Bond 6 (CB6r3) mechanism was incorporated with the SOA model to estimate the hydrocarbon consumption and the concentration of radicals (i.e., RO2 and HO2), which were closely related to atmospheric aging of gas products. Oxygenated products were lumped according to their volatilities and reactivity and linked to stoichiometric coefficients and their physicochemical parameters, which were dynamically constructed at different NOx levels and degrees of gas aging. To assess the gasoline SOA potential in ambient air, model parameters were corrected for gas–wall partitioning (GWP), which was predicted by a qualitative structure activity relationship for explicit products. The simulated gasoline SOA mass was evaluated against observed data obtained in the UF-APHOR chamber under ambient sunlight. The influence of environmental conditions on gasoline SOA was characterized under varying NOx levels, aerosol acidity, humidity, temperature, and concentrations of aqueous salts and gasoline vapor. Both the measured and simulated gasoline SOA formation was sensitive to seeded conditions (acidity and hygroscopicity) and NOx levels. A considerable difference in SOA mass appeared before and after efflorescence relative humidity in the presence of salted aqueous solution. SOA growth in the presence of aqueous reactions was more impacted by temperature than that in absence of seed. The impact of GWP on SOA formation was generally significant, and it appeared to be higher in the absence of wet salts. We conclude that the SOA model in the corpus with both heterogeneous reactions and the model parameters corrected for GWP is essential to accurately predict SOA mass in ambient air.


2012 ◽  
Vol 12 (10) ◽  
pp. 4493-4512 ◽  
Author(s):  
A. Klonecki ◽  
M. Pommier ◽  
C. Clerbaux ◽  
G. Ancellet ◽  
J.-P. Cammas ◽  
...  

Abstract. This work evaluates the IASI CO product against independent in-situ aircraft data from the MOZAIC program and the POLARCAT aircraft campaign. The validation is carried out by analysing the impact of assimilation of eight months of IASI CO columns retrieved for the period of May to December 2008 into the global chemistry transport model LMDz-INCA. A modelling system based on a sub-optimal Kalman filter was developed and a specific treatment that takes into account the representativeness of observations at the scale of the model grid is applied to the IASI CO columns and associated errors before their assimilation in the model. Comparisons of the assimilated CO profiles with in situ CO measurements indicate that the assimilation leads to a considerable improvement of the model simulations in the middle troposphere as compared with a control run with no assimilation. Model biases in the simulation of background values are reduced and improvement in the simulation of very high concentrations is observed. The improvement is due to the transport by the model of the information present in the IASI CO retrievals. Our analysis also shows the impact of assimilation of CO on the representation of transport into the Arctic region during the POLARCAT summer campaign. A considerable increase in CO mixing ratios over the Asian source region was observed when assimilation was used leading to much higher values of CO during the cross-pole transport episode. These higher values are in good agreement with data from the POLARCAT flights that sampled this plume.


2020 ◽  
Author(s):  
Simon Chabrillat ◽  
Vincent Huijnen ◽  
Quentin Errera ◽  
Jonas Debosscher ◽  
Idir Bouarar ◽  
...  

<p>Intercomparisons between Chemistry-Climate Models (CCMs) have highlighted shortcomings in our understanding and/or modeling of long-term ozone trends, and there is a growing interest in the impact of stratospheric ozone changes on tropospheric chemistry via both ozone fluxes (e.g. from the projected strengthening of the Brewer-Dobson circulation) and actinic fluxes. Advances in this area require a good understanding of the modelling uncertainties in the present-day distribution of stratospheric ozone, and a correct attribution of these uncertainties to the processes governing this distribution: photolysis, chemistry and transport. These processes depend primarily on solar irradiance, temperature and dynamics.</p><p>Here we estimate model uncertainties arising from different input datasets, and compare them with typical uncertainties arising from the transport and chemistry schemes. This study is based on four sets of tightly controlled sensititivity experiments which all use temperature and dynamics specified from reanalyses of meteorological observations. The first set of experiments uses one Chemistry-Transport Model (CTM) and evaluates the impact of using 3 different spectra of solar irradiance. In the second set, the CTM is run with 4 different input reanalyses: ERA-5, MERRA-2, ERA-I and JRA-55. The third set of experiments still relies on the same CTM, exploring the impact of the transport algorithm and its configuration. The fourth set is the most sophisticated as it is enabled by model developments for the Copernicus Atmopshere Monitoring Service, where the ECMWF model IFS is run with three different photochemistry modules named according to their parent CTM: IFS(CB05-BASCOE), IFS(MOCAGE) and IFS(MOZART).</p><p>All modelling experiments start from the same initial conditions and last 2.5 years (2013-2015). The uncertainties arising from different input datasets or different model components are estimated from the spreads in each set of sensitivity experiments and also from the gross error between the corresponding model means and the BASCOE Reanalysis of Aura-MLS (BRAM2). The results are compared across the four sets of experiments, as a function of latitude and pressure, with a focus on two regions of the stratosphere: the polar lower stratosphere in winter and spring - in order to assess and understand the quality of our ozone hole forecasts - and the tropical middle and upper stratosphere - where noticeably large disagreements are found between the experiments.</p>


2016 ◽  
Author(s):  
Régis Briant ◽  
Paolo Tuccella ◽  
Adrien Deroubaix ◽  
Dmitry Khvorostyanov ◽  
Laurent Menut ◽  
...  

Abstract. The presence of airborne aerosols affects the meteorology as it induces a perturbation in the radiation budget, the number of cloud condensation nuclei and the cloud micro-physics. Those effects are difficult to model at regional scale as several distinct models are usually involved. In this paper, the coupling of the CHIMERE chemistry-transport model with the WRF meteorological model using the OASIS3-MCT coupler is presented. WRF meteorological fields along with CHIMERE aerosol optical properties are exchanged through the coupler at a high frequency in order to model the aerosol direct and semidirect effects. The WRF-CHIMERE online model has a higher computational burden than both models ran separately in offline mode (up to 42 % higher). This is mainly due to some additional computations made within the models such as more frequent calls to meteorology treatment routines or calls to optical properties computations routines. On the other hand, the overall time required to perform the OASIS3-MCT exchanges is not significant compared to the total duration of the simulations. The impact of the coupling is evaluated on a case study over Europe, northern Africa, Middle East and western Asia during the Summer 2012, through comparisons of the offline and two online simulations (with and without the aerosol optical properties feedback) to observations of temperature, Aerosol Optical Depth (AOD) and surface PM10 (particulate matter with diameters lower than 10 µm) concentrations. Result shows that using the optical properties feedback induces a radiative forcing (average forcing of −4.8 W.m−2) which creates a perturbation in the average surface temperatures over desert areas (up to 2.6° locally) along with an increase of both AOD and PM10 concentrations.


2010 ◽  
Vol 3 (3) ◽  
pp. 1009-1087 ◽  
Author(s):  
V. Huijnen ◽  
J. E. Williams ◽  
M. van Weele ◽  
T. P. C. van Noije ◽  
M. C. Krol ◽  
...  

Abstract. We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0). A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment of the stratosphere, the wet and dry deposition parameterizations, and the applied emissions. We evaluate the model against a suite of ground-based, satellite, and aircraft measurements of components critical for understanding global photochemistry for the year 2006. The model exhibits a realistic oxidative capacity at a global scale. The methane lifetime is ~8.9 years with an associated lifetime of methyl chloroform of 5.86 years, which is similar to that derived using an optimized hydroxyl radical field. The seasonal cycle in observed carbon monoxide (CO) is well simulated at different regions across the globe. In the Northern Hemisphere CO concentrations are underestimated by about 20 ppbv in spring and 10 ppbv in summer, which is related to missing chemistry and underestimated emissions from higher hydrocarbons, as well as to uncertainties in the seasonal variation of CO emissions. The model also captures the spatial and seasonal variation in formaldehyde tropospheric columns as observed by SCIAMACHY. Positive model biases over the Amazon and eastern United States point to uncertainties in the isoprene emissions as well as its chemical breakdown. Simulated tropospheric nitrogen dioxide columns correspond well to observations from the Ozone Monitoring Instrument in terms of its seasonal and spatial variability (with a global spatial correlation coefficient of 0.89), but TM5 fields are lower by 25–40%. This is consistent with earlier studies pointing to a high bias of 0–30% in the OMI retrievals, but uncertainties in the emission inventories have probably also contributed to the discrepancy. TM5 tropospheric nitrogen dioxide profiles are in good agreement (within ~0.1 ppbv) with in situ aircraft observations from the INTEX-B campaign over (the Gulf of) Mexico. The model reproduces the spatial and seasonal variation in background surface ozone concentrations and tropospheric ozone profiles from the World Ozone and Ultraviolet Radiation Data Centre to within 10 ppbv, but at several tropical stations the model tends to underestimate ozone in the free troposphere. The presented model results benchmark the TM5 tropospheric chemistry version, which is currently in use in several international cooperation activities, and upon which future model improvements will take place.


Sign in / Sign up

Export Citation Format

Share Document