scholarly journals Growth of atmospheric clusters involving cluster-cluster collisions: comparison of different growth rate methods

2016 ◽  
Author(s):  
J. Kontkanen ◽  
T. Olenius ◽  
K. Lehtipalo ◽  
H. Vehkamäki ◽  
M. Kulmala ◽  
...  

Abstract. We simulated the time evolution of atmospheric cluster concentrations in a one-component system where clusters grow not only by condensation of monomers, but where also cluster-cluster collisions significantly contribute to the growth of the clusters. Our aims were to investigate the consistency of the growth rates of sub-3 nm clusters determined with different methods, and the validity of the common approach to use them to estimate particle formation rates. We compared the growth rate corresponding to particle fluxes (FGR), the growth rate derived from the appearance times of clusters (AGR) and the growth rate calculated based on irreversible vapor condensation (CGR). We found that the relation between the different growth rates depends strongly on the external conditions and the properties of the model substance. The difference between the different growth rates was typically highest at the smallest, sub-2nm sizes. FGR was generally lower than AGR and CGR; at the smallest sizes the difference was often very large, while at sizes larger than 2 nm, the growth rates were closer to each other. AGR and CGR were in most cases close to each other at all sizes. The difference between the growth rates was generally lower in conditions where cluster concentrations were high, and evaporation and other losses thus less significant. Furthermore, our results show that the conventional method used to determine particle formation rates from growth rates may give estimates far from the true values. Thus, care must be taken not only in how the growth rate is determined, but also in how it is applied.

2016 ◽  
Vol 16 (9) ◽  
pp. 5545-5560 ◽  
Author(s):  
Jenni Kontkanen ◽  
Tinja Olenius ◽  
Katrianne Lehtipalo ◽  
Hanna Vehkamäki ◽  
Markku Kulmala ◽  
...  

Abstract. We simulated the time evolution of atmospheric cluster concentrations in a one-component system where not only do clusters grow by condensation of monomers, but cluster–cluster collisions also significantly contribute to the growth of the clusters. Our aim was to investigate the consistency of the growth rates of sub-3 nm clusters determined with different methods and the validity of the common approach to use them to estimate particle formation rates. We compared the growth rate corresponding to particle fluxes (FGR), the growth rate derived from the appearance times of clusters (AGR), and the growth rate calculated based on irreversible vapor condensation (CGR). We found that the relation between the different growth rates depends strongly on the external conditions and the properties of the model substance. The difference between the different growth rates was typically highest at the smallest, sub-2 nm sizes. FGR was generally lower than AGR and CGR; at the smallest sizes the difference was often very large, while at sizes larger than 2 nm the growth rates were closer to each other. AGR and CGR were in most cases close to each other at all sizes. The difference between the growth rates was generally lower in conditions where cluster concentrations were high, and evaporation and other losses were thus less significant. Furthermore, our results show that the conventional method used to determine particle formation rates from growth rates may give estimates far from the true values. Thus, care must be taken not only in how the growth rate is determined but also in how it is applied.


1930 ◽  
Vol 7 (2) ◽  
pp. 165-174
Author(s):  
M. A. TAZELAAR

Linear measurements of certain appendages and the carapace of P. carcinus were made and plotted in various ways. The following conclusions were drawn: 1. The cheliped shows heterogonic growth in both male and female, but more markedly in the male, the values of k being: male 1.8 and female 1.48 2. The pereiopods in both male and female are slightly heterogonic. The relative growth rates are graded from p3 to p5, that of p3 being slightly greater than that of p5 3. Of the ordinary pereiopods the rate of growth of p1 is the smallest in the male, but the largest in the female. 4. The difference between the rates of growth of p1 and p3 in male and female is greatest where the rate of growth in the heterogonic organ, the cheliped, is most excessive in the male. 5. The growth of the 3rd maxilliped is slightly negatively heterogonic, the value of k in the male being 0.93 and in the female 0.95. Hence there seems to be a correlation between the marked heterogony in the cheliped on the growth rate of neighbouring appendages. In those immediately posterior to the cheliped the growth rate is increased and in those anterior decreased.


2021 ◽  
Author(s):  
Alexej Weber

AbstractBackground and AimsThe reported case numbers of COVID-19 are often used to estimate the reproduction number or the growth rate. We use the excess mortality instead, showing the difference between most restrictive non-pharmaceutical interventions (mrNPIs) and less restrictive NPIs (lrNPIs) with respect to the growth rate and death counts.MethodsWe estimate the COVID-19 growth rate for Sweden, South Korea, Italy and Germany from the excess mortality. We use the average growth rate obtained for Sweden and South Korea, two countries with lrNPIs, to estimate additional death numbers in Germany and Italy (two countries with mrNPIs) in a hypothetic lrNPIs scenario.ResultsThe growth rate estimated from excess mortality decreased faster for Germany and Italy than for Sweden and South Korea, suggesting that the mrNPIs have a non-negligible effect. This is not visible when the growth rate is calculated using the reported case numbers of COVID-19. This results in approximately 4 500 and 12 000 more death numbers for Germany and Italy, respectively.ConclusionThe reproduction numbers or growth rates obtained from reported COVID-19 cases are most likely biased. Expanding testing capacity led to an overestimation of the growth rate across all countries analyzed, masking the true decrease already visible in the excess mortality. Using our method, a more realistic estimate of the growth rate is obtained. Conclusions made for the reproduction number derived from the reported case numbers like the insignificance of most restrictive non-pharmaceutical interventions (lockdowns) might be wrong and have to be reevaluated using the growth rates obtained with our method.


2018 ◽  
Author(s):  
Tuomo Nieminen ◽  
Veli-Matti Kerminen ◽  
Tuukka Petäjä ◽  
Pasi P. Aalto ◽  
Mikhail Arshinov ◽  
...  

Abstract. Atmospheric new particle formation (NPF) is an important phenomenon in terms of the global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles and growth rates in the size range of 10–25 nm using at least one year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability, taking place on about 30 % of the days in March–May and on about 10 % of the days in December–February. The median formation rate of 10 nm particles varies by about three orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate between the different measurement sites, as well as between the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in Northern America, Asia and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.


2018 ◽  
Vol 18 (12) ◽  
pp. 8979-8993 ◽  
Author(s):  
Chenxi Li ◽  
Peter H. McMurry

Abstract. In systems in which aerosols are being formed by chemical transformations, individual particles grow due to the addition of molecular species. Efforts to improve our understanding of particle growth often focus on attempts to reconcile observed growth rates with values calculated from models. However, because it is typically not possible to measure the growth rates of individual particles in chemically reacting systems, they must be inferred from measurements of aerosol properties such as size distributions, particle number concentrations, etc. This work discusses errors in growth rates obtained using methods that are commonly employed for analyzing atmospheric data. We analyze “data” obtained by simulating the formation of aerosols in a system in which a single chemical species is formed at a constant rate, R. We show that the maximum overestimation error in measured growth rates occurs for collision-controlled nucleation in a single-component system in the absence of a preexisting aerosol, wall losses, evaporation or dilution, as this leads to the highest concentrations of nucleated particles. Those high concentrations lead to high coagulation rates that cause the nucleation mode to grow faster than would be caused by vapor condensation alone. We also show that preexisting particles, when coupled with evaporation, can significantly decrease the concentration of nucleated particles. This can lead to decreased discrepancies between measured growth rate and true growth rate by reducing coagulation among nucleated particles. However, as particle sink processes become stronger, measured growth rates can potentially be lower than true particle growth rates. We briefly discuss nucleation scenarios in which the observed growth rate approaches zero while the true growth rate does not.


1995 ◽  
Vol 35 (8) ◽  
pp. 1069 ◽  
Author(s):  
DG Hall ◽  
NM Fogarty ◽  
AR Gilmour

Merino rams of the Trangie Fertility and Booroola strains were joined to Poll Dorset ewes in single sire mating groups over 3 years. Forty sires produced a total of 1250 lambs in 885 litters from 451 ewes. Lamb birth weight averaged 4.1 kg, 80.8% of lambs survived to 3 days of age and growth rates to weaning (mean 93 days) averaged 289 g/day. Lambs with Trangie Fertility sires grew 15 g/day faster and were 1.3 kg heavier at weaning than those lambs with Booroola sires (P<0.001). There were no effects of sire strain on birth weight or lamb survival. Birth weight increased with dam liveweight in mid-pregnancy (P<0.001), and weaning weight and growth rate increased with dam liveweight at joining (P<0.001). Survival of lambs was predominantly a function of birth weight. Lambs weighing 4 kg at birth from primiparous dams had survival rates of 76% compared with 88% for lambs from multiparous dams (P<0.01). No lamb under 2.0 or over 6.3 kg survived, and 48% of deaths occurred within 1 day of birth. Dystocia, particularly of heavy, single-born lambs, caused 53% of observed lamb deaths. For the traits birth weight, lamb survival, weaning weight and growth rate, the direct heritabilities were 0.24 � 0.10, 0.05 � 0.05, 0.19 � 0.10 and 0.12 � 0.08 respectively; the corresponding maternal heritabilities were 0.08 � 0.05, 0.05 � 0.04, 0.05 � 0.05 and 0.07 � 0.05 respectively; and the common environmental effects among litter mates (c2) were 0.57 � 0.08, 0.47 � 0.08, 0.15 � 0.08 and 0.13 � 0.08 respectively.


1960 ◽  
Vol 55 (1) ◽  
pp. 61-68 ◽  
Author(s):  
B. E. March ◽  
C. Goudie ◽  
Jacob Biely

1. The apparent cleanliness of the premises in which chicks are reared has little bearing on the growth rate of chicks within a given environment.2. Bacterial counts of faeces from chicks reared under clean or extremely contaminated conditions showed no difference between the two sets of conditions.3. Delaying feeding until 72 hr. after hatching retarded growth to at least 7 weeks of age. If the age of the chicks was calculated from the time at which the chicks were fed rather than the date of hatch, the weights of the chicks fed 72 hr. after hatching corresponded with those of the chicks fed immediately.4. The contents of the duodenum and mesenteric intestine showed higher bacterial counts when feeding was delayed for 72 hr. than when feed was given shortly after hatching. This effect was no longer evident after the chicks were 1 week old.5. Administration of penicillin in the water did not reduce the difference in growth rates between the chicks given feed immediately and those from which feed was withheld.6. Antibiotics may decrease the thickness of the intestinal wall without stimulating growth.


2012 ◽  
Vol 12 (5) ◽  
pp. 11351-11389 ◽  
Author(s):  
F. Riccobono ◽  
L. Rondo ◽  
M. Sipilä ◽  
P. Barmet ◽  
J. Curtius ◽  
...  

Abstract. Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene. New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ), defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.


2012 ◽  
Vol 706-709 ◽  
pp. 1574-1579 ◽  
Author(s):  
Yasu Yogo ◽  
K. Tanaka ◽  
Hideaki Ikehata ◽  
Noritoshi Iwata ◽  
Kou Nakanishi ◽  
...  

Based on the solute drag model, a practical model incorporating the segregation effect is proposed to calculate grain growth rates in carbon steels. The segregation effect is modeled using two factors: the difference in atomic diameter between a solvent and a substitutional element, and the solubility of a substitutional element. By including the segregation energy, the proposed model enables the simulated retardation of grain growth by the addition of microalloying elements. The calculated grain growth rate by the proposed model shows reasonable correspondence between grain growth rates for experimental and calculated results. The temperature dependence of the grain growth rate is also well simulated.


1987 ◽  
Vol 109 (2) ◽  
pp. 114-118 ◽  
Author(s):  
Masakazu Okazaki ◽  
Takashi Koizumi

The surface and through crack growth behaviors of some steels in thermal-mechanical and isothermal low-cycle fatigue at elevated temperatures were investigated. It was shown that the crack growth rate under each test condition was successfully correlated with the cyclic J-integral range by the simple power law equation, regardless of crack configurations and test controlling modes. Based on the results thus obtained, the relationship between the crack growth rates of the two types of fatigue was discussed. When the crack growth rates in thermal-mechanical and isothermal low-cycle fatigue at elevated temperatures were correlated with the parameter of which the range of cyclic J-integral was divided by the equivalent flow stress defined in this work, they could be represented by a single curve approximately. The crack growth rates in isothermal fatigue under various test temperatures could be also represented by the same single crack growth curve described above, regardless of the test materials. From the above result, it was found that the difference of crack growth rate in both types of fatigue merely resulted from the difference of equivalent flow stress.


Sign in / Sign up

Export Citation Format

Share Document