scholarly journals Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub>O

2006 ◽  
Vol 6 (7) ◽  
pp. 1953-1976 ◽  
Author(s):  
B. Dils ◽  
M. De Mazière ◽  
J. F. Müller ◽  
T. Blumenstock ◽  
M. Buchwitz ◽  
...  

Abstract. Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared (FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.5 for CO and CH4 and version 0.4 for CO2 and N2O), IMAP-DOAS (version 1.1 and 0.9 (for CO)) and IMLM (version 6.3) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The present results indicate that the individual SCIAMACHY data obtained with the actual versions of the algorithms have been significantly improved, but that the quality requirements, for estimating emissions on regional scales, are not yet met. Nevertheless, possible directions for further algorithm upgrades have been identified which should result in more reliable data products in a near future.

2005 ◽  
Vol 5 (3) ◽  
pp. 2677-2717 ◽  
Author(s):  
B. Dils ◽  
M. De Mazière ◽  
T. Blumenstock ◽  
M. Buchwitz ◽  
R. de Beek ◽  
...  

Abstract. Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared (FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.4, 0.41 for CH4), IMAP-DOAS (version 0.9) and IMLM (version 5.5) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The ensemble of comparisons, discussed in this paper, demonstrate the capability of SCIAMACHY, using any of the three algorithms, to deliver products for the target species under consideration, which are already useful for qualitative geophysical studies on a global scale. It is expected that the remaining uncertainties in the data products will decrease in future versions of the algorithm to also allow more quantitative investigations on a regional scale.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2029 ◽  
Author(s):  
Marina D. G. Neves ◽  
Ronei J. Poppi ◽  
Heinz W. Siesler

Nowadays, near infrared (NIR) spectroscopy has experienced a rapid progress in miniaturization (instruments < 100 g are presently available), and the price for handheld systems has reached the < $500 level for high lot sizes. Thus, the stage is set for NIR spectroscopy to become the technique of choice for food and beverage testing, not only in industry but also as a consumer application. However, contrary to the (in our opinion) exaggerated claims of some direct-to-consumer companies regarding the performance of their “food scanners” with “cloud evaluation of big data”, the present publication will demonstrate realistic analytical data derived from the development of partial least squares (PLS) calibration models for six different nutritional parameters (energy, protein, fat, carbohydrates, sugar, and fiber) based on the NIR spectra of a broad range of different pasta/sauce blends recorded with a handheld instrument. The prediction performance of the PLS calibration models for the individual parameters was double-checked by cross-validation (CV) and test-set validation. The results obtained suggest that in the near future consumers will be able to predict the nutritional parameters of their meals by using handheld NIR spectroscopy under every-day life conditions.


Author(s):  
Debra Wunch ◽  
Geoffrey C. Toon ◽  
Jean-François L. Blavier ◽  
Rebecca A. Washenfelder ◽  
Justus Notholt ◽  
...  

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO 2 , CO, CH 4 , N 2 O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO 2 ). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 479
Author(s):  
Kensuke Homma ◽  
Yuri Kirita ◽  
Fumiya Ishibashi

We explore a possibility to detect dark components in the Universe via stimulated photon–photon collisions by focusing two-frequency coherent electromagnetic fields in a vacuum. Those fields are assumed to be pulsed reaching Fourier transform limits in near-infrared, THz, and GHz frequency bands, respectively. The numbers of signal photons as a result of exchange of a pseudoscalar-type pseudo Nambu–Goldstone boson have been evaluated in the individual frequency bands. Within presently available beam intensities, we found that the QCD axion scenarios are thoroughly testable in the mass range 10−6–100 eV based on the common method. Furthermore, we show a possibility to reach the weak coupling domain even beyond the gravitationally weak coupling strength if pulse compression in the GHz band is realized in the near future development.


2013 ◽  
Vol 215 ◽  
pp. 703-726 ◽  
Author(s):  
Isabelle Attané ◽  
Zhang Qunlin ◽  
Li Shuzhuo ◽  
Yang Xueyan ◽  
Christophe Z. Guilmoto

AbstractTraditionally, marriage is a near universality in China. However, in the coming decades, owing to the growing sex imbalance, millions of men will be unable to marry. As a consequence, bachelorhood is becoming a new demographic concern, particularly affecting men from the most disadvantaged socio-economic groups. In China's cultural context today, heterosexual marriage remains a prerequisite for family formation and, in rural society particularly, the legitimate setting for sexual activity. Under such circumstances, bachelorhood is likely to produce privations on various fronts, the consequences of which for both the individual and the community are still largely unknown. This article focuses on the opinions and sexual behaviour of bachelors, and highlights significant variations from those of married men. It is based on the findings of an exploratory survey conducted in 2008 in selected villages in a rural county in Anhui province, referred to here as JC county. The survey provides insights into the more general situation of rural men unable to marry in a context of female shortage, and indicates the conditions a growing number of Chinese men will face in the near future.


1996 ◽  
Vol 26 (9) ◽  
pp. 1709-1713 ◽  
Author(s):  
Paul C. Van Deusen

Growth modeling of forests at the individual tree and stand levels is a highly refined procedure for many forest types. A method to incorporate predictions from such models into a forest inventory system is developed. Variance components from the actual measurements and from the predicted measurements are used to estimate the variance of the combined predicted value. The only assumption required to justify this method is that the model estimate has a bias that does not change from one time period to the next. The estimation procedure proposed here can also incorporate remotely sensed information via a regression estimator.


2012 ◽  
Vol 8 (1) ◽  
pp. 89-115 ◽  
Author(s):  
V. K. C. Venema ◽  
O. Mestre ◽  
E. Aguilar ◽  
I. Auer ◽  
J. A. Guijarro ◽  
...  

Abstract. The COST (European Cooperation in Science and Technology) Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Training the users on homogenization software was found to be very important. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that automatic algorithms can perform as well as manual ones.


Author(s):  
Massimo Franchini ◽  
Antonella Tufano ◽  
Aniello Casoria ◽  
Antonio Coppola

AbstractCancer is associated with an increased incidence of both venous thromboembolism (VTE) and arterial thrombosis (cardiovascular events and ischemic stroke). Cancer-associated arterial thrombotic events are less well studied than VTE, but increasingly recognized, particularly in specific malignancies and in association with specific anticancer therapies. The pathogenesis of arterial thrombotic events in cancer is complex and involves generation of tumor-associated procoagulant factors and a variety of alterations in platelet function as well as in the coagulation and fibrinolytic systems, and endothelial injury and dysfunction, that combine to produce hypercoagulability. The multifactorial interaction between this prothrombotic state, the individual cardiovascular risk, advanced age and presence of comorbidities, and the specific neoplasm characteristics and therapy, may induce the vascular events. Recent studies based on population databases and prospective or retrospective analyses with prolonged follow-up highlight that cancer patients experience an increased (approximately 1.5–2-fold) risk of both cerebrovascular and cardiovascular events compared with noncancer individuals, which peaks in the time period of the diagnosis of cancer but may persist for years. Beyond the type of cancer, the risk reflects the tumor burden, being higher in advanced stages and metastatic cancers. The occurrence of arterial thromboembolic events is also associated with increased overall mortality. We here present an update of the pathophysiology, risk factors, clinical evidence, and treatment considerations on cancer-associated arterial thrombosis, in the light of the need for specific multidisciplinary prevention and surveillance strategies in this setting, in the frame of cardio-oncology approaches.


2015 ◽  
Vol 8 (8) ◽  
pp. 3433-3445 ◽  
Author(s):  
J. R. Worden ◽  
A. J. Turner ◽  
A. Bloom ◽  
S. S. Kulawik ◽  
J. Liu ◽  
...  

Abstract. Evaluating surface fluxes of CH4 using total column data requires models to accurately account for the transport and chemistry of methane in the free troposphere and stratosphere, thus reducing sensitivity to the underlying fluxes. Vertical profiles of methane have increased sensitivity to surface fluxes because lower tropospheric methane is more sensitive to surface fluxes than a total column, and quantifying free-tropospheric CH4 concentrations helps to evaluate the impact of transport and chemistry uncertainties on estimated surface fluxes. Here we demonstrate the potential for estimating lower tropospheric CH4 concentrations through the combination of free-tropospheric methane measurements from the Aura Tropospheric Emission Spectrometer (TES) and XCH4 (dry-mole air fraction of methane) from the Greenhouse gases Observing SATellite – Thermal And Near-infrared for carbon Observation (GOSAT TANSO, herein GOSAT for brevity). The calculated precision of these estimates ranges from 10 to 30 ppb for a monthly average on a 4° × 5° latitude/longitude grid making these data suitable for evaluating lower-tropospheric methane concentrations. Smoothing error is approximately 10 ppb or less. Comparisons between these data and the GEOS-Chem model demonstrate that these lower-tropospheric CH4 estimates can resolve enhanced concentrations over flux regions that are challenging to resolve with total column measurements. We also use the GEOS-Chem model and surface measurements in background regions across a range of latitudes to determine that these lower-tropospheric estimates are biased low by approximately 65 ppb, with an accuracy of approximately 6 ppb (after removal of the bias) and an actual precision of approximately 30 ppb. This 6 ppb accuracy is consistent with the accuracy of TES and GOSAT methane retrievals.


1998 ◽  
Vol 4 (4) ◽  
pp. 188-196 ◽  
Author(s):  
Gethin Morgan ◽  
Carole Buckley ◽  
Mike Nowers

The clinical assessment and management of suicide risk depends primarily on face to face contact with the individual who presents the risk, and aims to predict behaviour in the very near future. Whether or not clinical intervention prevents suicide depends a great deal on the clinician's skill in reaching out to the individual patient. This poses a dilemma, because much of what has been written about predicting suicide has been based on averaged data concerning long-term outcome in large cohorts of patients.


Sign in / Sign up

Export Citation Format

Share Document