scholarly journals Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

2012 ◽  
Vol 12 (1) ◽  
pp. 1299-1400 ◽  
Author(s):  
R. A. Zaveri ◽  
W. J. Shaw ◽  
D. J. Cziczo ◽  
B. Schmid ◽  
R. A. Ferrare ◽  
...  

Abstract. Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

2012 ◽  
Vol 12 (16) ◽  
pp. 7647-7687 ◽  
Author(s):  
R. A. Zaveri ◽  
W. J. Shaw ◽  
D. J. Cziczo ◽  
B. Schmid ◽  
R. A. Ferrare ◽  
...  

Abstract. Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.


2016 ◽  
Vol 16 (3) ◽  
pp. 1729-1746 ◽  
Author(s):  
L. Kleinman ◽  
C. Kuang ◽  
A. Sedlacek ◽  
G. Senum ◽  
S. Springston ◽  
...  

Abstract. During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the US Department of Energy (DOE) G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA, plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced by the simultaneous presence of high concentrations of carbon monoxide (CO) and either isoprene, MVK + MACR (sum of methyl vinyl ketone and methacrolein), or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, “Bio”, for individual plume transects indicate that most of the variance in OA over short timescales and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., ΔOA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst Δ values in order to probe day-to-day and location-dependent variability. Species that predicted the largest fraction of the variance in ΔOA were ΔO3 and ΔCO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was  ∼  60 % of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil, even though the day-to-day and spatial variability of plume OA is best described by an anthropogenic tracer, CO. Transects were split into subsets according to the percentile rankings of ΔCO and ΔBio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic–biogenic (A–B) interactions enhance OA production. As found earlier, ΔOA in the data subset having high ΔCO and high ΔBio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence of ΔOA on precursors. The highest values of ΔO3, along with high temperatures, clear skies, and poor ventilation, also occurred in the high ΔCO–high ΔBio data set. A complicated mix of A–B interactions can result. After taking into account linear effects as predicted from low concentration data, an A–B enhancement of OA by a factor of 1.2 to 1.5 is estimated.


2011 ◽  
Vol 11 (11) ◽  
pp. 29949-30008 ◽  
Author(s):  
J. D. Fast ◽  
W. I. Gustafson ◽  
L. K. Berg ◽  
W. J. Shaw ◽  
M. Pekour ◽  
...  

Abstract. We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that is then entrained into the growing boundary layer the subsequent day.


2012 ◽  
Vol 12 (4) ◽  
pp. 1759-1783 ◽  
Author(s):  
J. D. Fast ◽  
W. I. Gustafson Jr. ◽  
L. K. Berg ◽  
W. J. Shaw ◽  
M. Pekour ◽  
...  

Abstract. We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 257
Author(s):  
Jin Sang Jung ◽  
Ji Hwan Kang

To investigate the impact of burning postharvest crop residues in home stoves, PM2.5 samples (particulate matter with a diameter of <2.5 μm) were collected every 3 h at a rural site in Daejeon, Korea during the postharvest season in 2014. A high concentration of levoglucosan was observed with a peak value of 3.8 µg/m3 during the sampling period. The average mannosan/levoglucosan ratio (0.18) at the rural site during a severe BB episode (levoglucosan > 1 μg/m3) was similar to burnings of pepper stems (0.19) and bean stems (0.18) whereas the average OC/levoglucosan ratio (9.9) was similar to burning of pepper stems (10.0), implying that the severe BB episode was mainly attributed to burning of pepper stems. A very strong correlation was observed between levoglucosan and organic carbon (OC) (R2 = 0.81) during the entire sampling period, suggesting that the emission of organic aerosols at the rural site was strongly associated with the burning of crop residues in home stoves. The average mannosan/levoglucosan ratio (0.17 ± 0.06) in the rural area was similar to that in a nearby urban area in Daejeon (0.16 ± 0.04). It was concluded that crop residue burning in a home stove for space heating is one of the important sources of carbonaceous aerosols not only in a rural area but also in the urban area of Daejeon, Korea during the postharvest season.


2007 ◽  
Vol 88 (7) ◽  
pp. 1059-1084 ◽  
Author(s):  
Steven J. Ghan ◽  
Stephen E. Schwartz

Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. However, the present treatment of aerosols in global climate models is highly simplified, omitting many processes and feedbacks that are thought to be climatically important. Thus, there is need for substantial improvement. Here we describe the strategy of the U.S. Department of Energy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules describing specific aerosol properties and processes. These modules are then integrated into regional aerosol models, which are evaluated by comparison with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparison with satellite retrievals and other observations. Finally, the validated set of modules is applied in global climate models for multicentury simulations. This strategy is expected to be applied to successive generations of global climate models.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 4787-4812 ◽  
Author(s):  
Martin Wild ◽  
Maria Z. Hakuba ◽  
Doris Folini ◽  
Patricia Dörig-Ott ◽  
Christoph Schär ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2014 ◽  
Vol 14 (13) ◽  
pp. 7031-7043 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.


2011 ◽  
Vol 11 (7) ◽  
pp. 21013-21054 ◽  
Author(s):  
A. L. Steiner ◽  
S. N. Pressley ◽  
A. Botros ◽  
E. Jones ◽  
S. H. Chung ◽  
...  

Abstract. Intermittent coherent structures can be responsible for a large fraction of the chemical exchange between the vegetation canopy and the atmosphere. Quantifying their contribution to fluxes is necessary to interpret measurements of trace gases and aerosols within and above forest canopies. The primary objective of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign (10 July 2009 to 9 August 2009) was to study the chemistry of volatile organic compounds (VOC) within and above a forest canopy. In this manuscript, we provide an analysis of coherent structures and canopy-atmosphere exchange during CABINEX to support in-canopy gradient measurements of VOC. We quantify the number and duration of coherent structure events and their percent contribution to momentum and heat fluxes with two methods: (1) quadrant-hole analysis and (2) wavelet analysis. Despite differences in the duration and number of events, both methods predict that coherent structures contribute 40–50 % to total momentum fluxes and 44–65 % to total heat fluxes during the CABINEX campaign. Contributions associated with coherent structures are slightly greater under stable rather than unstable conditions. By comparing heat fluxes within and above the canopy, we determine the degree of coupling between upper canopy and atmosphere and find that they are coupled to the majority of the campaign time period. Uncoupled canopy-atmosphere events occur in the early morning (04:00–08:00 LT) approximately 30 % of the time. This study confirms that coherent structures contribute significantly to the exchange of heat and momentum between the canopy and atmosphere at the CABINEX site, and indicates the need to include these transport processes when studying the mixing and chemical reactions of trace gases and aerosols between a forest canopy and the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document