scholarly journals How small is a small cloud?

2008 ◽  
Vol 8 (2) ◽  
pp. 6379-6407 ◽  
Author(s):  
I. Koren ◽  
L. Oreopoulos ◽  
G. Feingold ◽  
L. A. Remer ◽  
O. Altaratz

Abstract. The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds. Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing. The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels. We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS) the average "cloud-free" reflectance at 1.65 μm increases more than 25%, the cloud reflectance decreases by half, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.

2008 ◽  
Vol 8 (14) ◽  
pp. 3855-3864 ◽  
Author(s):  
I. Koren ◽  
L. Oreopoulos ◽  
G. Feingold ◽  
L. A. Remer ◽  
O. Altaratz

Abstract. The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds. Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing. The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels. We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS) the average "cloud-free" reflectance at 1.65 μm increases from 0.0095 to 0.0115 (>20%), the cloud reflectance decreases from 0.13 to 0.066 (~50%), and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.


2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2017 ◽  
Vol 10 (1) ◽  
pp. 433-452 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Karsten Peters ◽  
Sebastian Rast ◽  
...  

Abstract. A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be −0.6 and −0.5 W m−2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.


2005 ◽  
Vol 5 (3) ◽  
pp. 755-765 ◽  
Author(s):  
S. Ghosh ◽  
S. Osborne ◽  
M. H. Smith

Abstract. Owing to their extensive spatial coverage, stratocumulus clouds play a crucial role in the radiation budget of the earth. Climate models need an accurate characterisation of stratocumulus in order to provide an accurate forecast. However, remote sensing as well as in-situ observations reveal that on several occasions, cumulus clouds present below the stratocumulus, often have a significant impact on the main stratocumulus microphysical properties. This was observed during the ACE-2 (Aerosol Characterisation Experiment-2) campaign designed to study the impact of polluted continental air on stratocumulus formation. In this paper we used a detailed micro-physical chemical parcel model to quantify the extent of this cumulus-stratocumuls coupling. In addition, we made extensive use of microphysical observations from the C-130 aircraft that was operated during ACE-2. For the ACE-2 case studies considered in this paper, our analysis revealed that the chemical, microphysical and optical characteristics of the main stratocumulus cloud deck had significant contributions from cumulus clouds that often penetrated the stratocumulus deck. The amount of fine mode ionic species, the average droplet number concentrations, the effective radii and the optical depths during the flight A562 (when cumulus clouds interacted with the main stratocumulus) were estimated and model runs that included this effect yielded microphysical and optical properties which compared more favourably with the observations than the runs which did not. This study highlights the importance of including these cumulus effects in stratocumulus related modelling studies.


Science ◽  
2019 ◽  
Vol 363 (6427) ◽  
pp. eaav0566 ◽  
Author(s):  
Daniel Rosenfeld ◽  
Yannian Zhu ◽  
Minghuai Wang ◽  
Youtong Zheng ◽  
Tom Goren ◽  
...  

A lack of reliable estimates of cloud condensation nuclei (CCN) aerosols over oceans has severely limited our ability to quantify their effects on cloud properties and extent of cooling by reflecting solar radiation—a key uncertainty in anthropogenic climate forcing. We introduce a methodology for ascribing cloud properties to CCN and isolating the aerosol effects from meteorological effects. Its application showed that for a given meteorology, CCN explains three-fourths of the variability in the radiative cooling effect of clouds, mainly through affecting shallow cloud cover and water path. This reveals a much greater sensitivity of cloud radiative forcing to CCN than previously reported, which means too much cooling if incorporated into present climate models. This suggests the existence of compensating aerosol warming effects yet to be discovered, possibly through deep clouds.


2010 ◽  
Vol 10 (4) ◽  
pp. 10429-10462
Author(s):  
S. S. Lee ◽  
J. E. Penner

Abstract. Cirrus clouds cover approximately 20–25% of the globe and thus play an important role in the Earth's radiation budget. This indicates that aerosol effects on cirrus clouds can have a substantial impact on the variation of global radiative forcing if the ice-water path (IWP) changes. This study examines the aerosol indirect effect (AIE) through changes in the IWP for a cirrus cloud case. We use a cloud-system resolving model (CSRM) coupled with a double-moment representation of cloud microphysics. Intensified interactions among the cloud ice number concentration (CINC), deposition and dynamics play a critical role in the IWP increases due to aerosol increases. Increased aerosols lead to increased CINC, providing increased surface area for water vapor deposition. The increased deposition causes depositional heating which produces stronger updrafts, and leads to the increased IWP. The conversion of ice crystals to aggregates through autoconversion and accretion plays a negligible role in the IWP responses to aerosols, as the sedimentation of aggregates. The sedimentation of ice crystals plays a more important role in the IWP response to aerosol increases than the sedimentation of aggregates, but, not more important than the interactions among the CINC, deposition and dynamics.


2011 ◽  
Vol 11 (10) ◽  
pp. 4633-4644 ◽  
Author(s):  
S. Zhang ◽  
H. Xue ◽  
G. Feingold

Abstract. Conventional satellite retrievals can only provide information on cloud-top droplet effective radius (re). Given the fact that cloud ensembles in a satellite snapshot have different cloud-top heights, Rosenfeld and Lensky (1998) used the cloud-top height and the corresponding cloud-top re from the cloud ensembles in the snapshot to construct a profile of re representative of that in the individual clouds. This study investigates the robustness of this approach in shallow convective clouds based on results from large-eddy simulations (LES) for clean (aerosol mixing ratio Na = 25 mg−1), intermediate (Na = 100 mg−1), and polluted (Na = 2000 mg−1) conditions. The cloud-top height and the cloud-top re from the modeled cloud ensembles are used to form a constructed re profile, which is then compared to the in-cloud re profiles. For the polluted and intermediate cases where precipitation is negligible, the constructed re profiles represent the in-cloud re profiles fairly well with a low bias (about 10 %). The method used in Rosenfeld and Lensky (1998) is therefore validated for nonprecipitating shallow cumulus clouds. For the clean, drizzling case, the in-cloud re can be very large and highly variable, and quantitative profiling based on cloud-top re is less useful. The differences in re profiles between clean and polluted conditions derived in this manner are however, distinct. This study also investigates the subadiabatic characteristics of the simulated cumulus clouds to reveal the effect of mixing on re and its evolution. Results indicate that as polluted and moderately polluted clouds develop into their decaying stage, the subadiabatic fraction fad becomes smaller, representing a higher degree of mixing, and re becomes smaller (~10 %) and more variable. However, for the clean case, smaller fad corresponds to larger re (and larger re variability), reflecting the additional influence of droplet collision-coalescence and sedimentation on re. Finally, profiles of the vertically inhomogeneous clouds as simulated by the LES and those of the vertically homogeneous clouds are used as input to a radiative transfer model to study the effect of cloud vertical inhomogeneity on shortwave radiative forcing. For clouds that have the same liquid water path, re of a vertically homogeneous cloud must be about 76–90 % of the cloud-top re of the vertically inhomogeneous cloud in order for the two clouds to have the same shortwave radiative forcing.


2015 ◽  
Vol 28 (12) ◽  
pp. 4794-4819 ◽  
Author(s):  
Bjorn Stevens

Abstract Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre-1950) part of the instrumental record. This model, which contains terms representing both aerosol–radiation and aerosol–cloud interactions, well represents the known time history of aerosol radiative forcing as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrate that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3-K temperature rise between 1850 and 1950 can be attributed to Northern Hemisphere forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding to provide further support for the less negative (−1.0 W m−2) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.


2019 ◽  
Vol 12 (3) ◽  
pp. 989-1007 ◽  
Author(s):  
Stephanie Fiedler ◽  
Bjorn Stevens ◽  
Matthew Gidden ◽  
Steven J. Smith ◽  
Keywan Riahi ◽  
...  

Abstract. We present the first forcing interpretation of the future anthropogenic aerosol scenarios of CMIP6 with the simple plumes parameterisation MACv2-SP. The nine scenarios for 2015 to 2100 are based on anthropogenic aerosol emissions for use in CMIP6 (Riahi et al., 2017; Gidden et al., 2018). We use the emissions to scale the observationally informed anthropogenic aerosol optical properties and the associated effect on the cloud albedo of present-day (Fiedler et al., 2017; Stevens et al., 2017) into the future. The resulting scenarios in MACv2-SP are then ranked according to their strength in forcing magnitude and spatial asymmetries for anthropogenic aerosol. All scenarios, except SSP3-70 and SSP4-60, show a decrease in anthropogenic aerosol by 2100 with a range from 108 % to 36 % of the anthropogenic aerosol optical depth in 2015. We estimate the radiative forcing of anthropogenic aerosol from high- and low-end scenarios in the mid-2090s by performing ensembles of simulations with the atmosphere-only configuration of MPI-ESM1.2. MACv2-SP translates the CMIP6 emission scenarios for inducing anthropogenic aerosol forcing. With the implementation in our model, we obtain forcing estimates for both the shortwave instantaneous radiative forcing (RF) and the effective radiative forcing (ERF) of anthropogenic aerosol relative to 1850. Here, ERF accounts for rapid atmospheric adjustments and natural variability internal to the model. The ERF of anthropogenic aerosol for the mid-2090s ranges from −0.15 W m−2 for SSP1-19 to −0.54 W m−2 for SSP3-70, i.e. the mid-2090s ERF is 30 %–108 % of the value in the mid-2000s due to differences in the emission pathway alone. Assuming a stronger Twomey effect changes these ERFs to −0.39 and −0.92 W m−2, respectively, which are similar to estimates obtained from models with complex aerosol parameterisations. The year-to-year standard deviations around 0.3 W m−2 associated with natural variability highlight the necessity to average over sufficiently long time periods for estimating ERF; this is in contrast to RF that is typically well constrained after simulating just 1 year. The scenario interpretation of MACv2-SP will be used within the framework of CMIP6 and other cutting-edge scientific endeavours.


2012 ◽  
Vol 5 (4) ◽  
pp. 851-871 ◽  
Author(s):  
E. Hirsch ◽  
E. Agassi ◽  
I. Koren

Abstract. Clouds play a critical role in the Earth's radiative budget as they modulate the atmosphere by reflecting shortwave solar radiation and absorbing long wave IR radiation emitted by the Earth's surface. Although extensively studied for decades, cloud modelling in global circulation models is far from adequate, mostly due to insufficient spatial resolution of the circulation models. In addition, measurements of cloud properties still need improvement, since the vast majority of remote sensing techniques are focused in relatively large, thick clouds. In this study, we utilize ground based hyperspectral measurements and analysis to explore very thin water clouds. These clouds are characterized by liquid water path (LWP) that spans from as high as ~50g m−2 and down to 65 mg m−2 with a minimum of about 0.01 visible optical depth. The retrieval methodology relies on three elements: a detailed radiative transfer calculations in the longwave IR regime, signal enhancement by subtraction of a clear sky reference, and spectral matching method which exploits fine spectral differences between water droplets of different radii. A detailed description of the theoretical basis for the retrieval technique is provided along with a comprehensive discussion regarding its limitations. The proposed methodology was validated in a controlled experiment where artificial clouds were sprayed and their effective radii were both measured and retrieved simultaneously. This methodology can be used in several ways: (1) the frequency and optical properties of very thin water clouds can be studied more precisely in order to evaluate their total radiative forcing on the Earth's radiation budget. (2) The unique optical properties of the inter-region between clouds (clouds' "twilight zone") can be studied in order to more rigorously understanding of the governing physical processes which dominate this region. (3) Since the optical thickness of a developed cloud gradually decreases towards its edges, the proposed methodology can be used to study the spatial microphysical behaviour of these edges. (4) A spatial-temporal analysis can be used to study mixing processes in clouds' entrainment zone.


Sign in / Sign up

Export Citation Format

Share Document