scholarly journals Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan

2019 ◽  
Vol 12 (6) ◽  
pp. 3039-3065 ◽  
Author(s):  
Eriko Kobayashi ◽  
Shunsuke Hoshino ◽  
Masami Iwabuchi ◽  
Takuji Sugidachi ◽  
Kensaku Shimizu ◽  
...  

Abstract. A total of 87 dual flights of Meisei RS-11G radiosondes and Vaisala RS92-SGP radiosondes were carried out at the Aerological Observatory of the Japan Meteorological Agency (36.06∘ N, 140.13∘ E, 25.2 m) from April 2015 to June 2017. Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) data products from both sets of radiosonde data for 52 flights were subsequently created using a documented processing program along with the provision of optimal estimates for measurement uncertainty. Differences in the performance of the radiosondes were then quantified using the GRUAN data products. The temperature measurements of RS-11G were, on average, 0.4 K lower than those of RS92-SGP in the stratosphere for daytime observations. The relative humidity measurements of RS-11G were, on average, 2 % RH (relative humidity) lower than those of RS92-SGP under 90 % RH–100 % RH conditions, while RS-11G gave on average 5 % RH higher values than RS92-SGP under ≤50 % RH conditions. The results from a dual flight of RS-11G and a cryogenic frost point hygrometer (CFH) also showed that RS-11G gave 1 % RH–10 % RH higher values than the CFH in the troposphere. Differences between the RS-11G and RS92-SGP temperature and relative humidity measurements, based on combined uncertainties, were also investigated to clarify major influences behind the differences. It was found that temperature differences in the stratosphere during daytime observation were within the range of uncertainty (k=2), and that sensor orientation is the major source of uncertainty in the RS92-SGP temperature measurement, while sensor albedo is the major source of uncertainty for RS-11G. The relative humidity difference in the troposphere was larger than the uncertainty (k=2) after the radiosondes had passed through the cloud layer, and the temperature–humidity dependence correction was the major source of uncertainty in RS-11G relative humidity measurement. Uncertainties for all soundings were also statistically investigated. Most nighttime temperature measurements for pressures of >10 hPa were in agreement, while relative humidity in the middle troposphere exhibited significant differences. Around half of all daytime temperature measurements at pressures of ≤150 hPa and relative humidity measurements around the 500 hPa level were not in agreement.

2019 ◽  
Author(s):  
Eriko Kobayashi ◽  
Shunsuke Hoshino ◽  
Masami Iwabuchi ◽  
Takuji Sugidachi ◽  
Kensaku Shimizu ◽  
...  

Abstract. A total of 87 dual flights of Meisei RS-11G radiosondes and Vaisala RS92-SGP radiosondes were carried out at the Aerological Observatory of the Japan Meteorological Agency (36.06° N, 140.13° E, 25.2 m) from April 2015 to June 2017. Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) data products from both sets of radiosonde data for 52 flights were subsequently created using a documented processing program along with the provision of optimal estimates for measurement uncertainty. The authors then quantified differences in the performance of the radiosondes using GRUAN data products. The temperature measurements of RS-11G were 0.4 K lower than those of RS92-SGP in the stratosphere during daytime observation. The relative humidity measurements of RS-11G were 2‰RH lower than those of RS92-SGP under 90–100‰RH conditions, while RS-11G gave 5‰RH higher values than RS92-SGP under ≤ 50‰RH conditions. The results from a dual flight of RS-11G and a cryogenic frostpoint hygrometer (CFH) also showed that RS-11G gave 1–10‰RH higher values than the CFH in the troposphere. The authors additionally investigated the RS-11G minus RS92-SGP difference of temperature and relative humidity based on combined uncertainties to clarify major influences behind the difference. It was found that temperature differences in the stratosphere during daytime observation were within the range of uncertainty (k = 2), and that sensor orientation is the major source of uncertainty in RS92-SGP temperature measurement, while sensor albedo is the major source for RS-11G. The relative humidity difference in the troposphere was larger than the uncertainty (k = 2) after the radiosondes had passed through the cloud layer, and temperature-humidity dependence correction was the major source of uncertainty in RS-11G relative humidity measurement. Uncertainties for all soundings were also statistically investigated. Most night-time temperature differences for pressures of > 10 hPa were in agreement, while relative humidity differences in the middle troposphere exhibited significant differences. Around half of all daytime temperature differences at pressures of ≤ 150 hPa and relative humidity differences around the 500 hPa level were not in agreement.


2020 ◽  
Vol 37 (5) ◽  
pp. 857-871
Author(s):  
Jean-Charles Dupont ◽  
Martial Haeffelin ◽  
Jordi Badosa ◽  
Gaelle Clain ◽  
Christophe Raux ◽  
...  

AbstractMeasurement of water vapor or humidity in the atmosphere is fundamental for many applications. Relative humidity measurements with a capacitive sensor in radiosondes are affected by several factors that need to be assessed and corrected. This work aims to address corrections for the main effects for the Meteomodem M10 radiosonde as a step to meet the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) requirements. The considered corrections are 1) the calibration correction; 2) a slow regime due to the slow diffusion of molecules through the sensor, especially at very high and very low relative humidity conditions; 3) the relative humidity sensor dependence on the gradient of temperature; and 4) the time lag at cold temperatures, which affects measurements in regions of strong relative humidity gradients. These corrections were tested for 26 nighttime and 25 daytime radiosondes in two midlatitude locations for which both Meteomodem M10 and Vaisala RS92 measurements were available. The results show that, after correcting for the four effects, M10 relative humidity measurements are, on average, consistent with the Vaisala RS92 relative humidity values within 2% RH at all altitudes for the nighttime launches (against 6% RH before the correction) and within 5% RH at all altitudes for the daytime launches (against 9% RH before the correction).


2007 ◽  
Vol 7 (1) ◽  
pp. 1261-1293 ◽  
Author(s):  
R. Treffeisen ◽  
R. Krejci ◽  
J. Ström ◽  
A. C. Engvall ◽  
A. Herber ◽  
...  

Abstract. Water vapour is an important component in the radiative balance of the polar atmosphere. We present a study covering fourteen-years of data of tropopsheric humidity profiles measured with standard radiosondes at Ny-Ålesund (78°55' N 11°52' E) during the period from 1991 to 2005. It is well known that relative humidity measurements are less reliable at cold temperatures when measured with standard radiosondes. The data were corrected for errors and used to determine key characteristic features of the vertical and temporal RH evolution in the Arctic troposphere over Ny-Ålesund. We present frequency occurrence of ice-supersaturation layers in the troposphere, their vertical span, temperature and statistical distribution. Supersaturation with respect to ice shows a clear seasonal behaviour. In winter (October–February) it occurred in 22% of all cases and less frequently in spring (March–May 13%), and summer (June–September, 10%). The results are finally compared with findings from the SAGE II satellite instrument on subvisible clouds.


2007 ◽  
Vol 7 (10) ◽  
pp. 2721-2732 ◽  
Author(s):  
R. Treffeisen ◽  
R. Krejci ◽  
J. Ström ◽  
A. C. Engvall ◽  
A. Herber ◽  
...  

Abstract. Water vapour is an important component in the radiative balance of the polar atmosphere. We present a study covering fifteen years of data of tropospheric humidity profiles measured with standard radiosondes at Ny-Ålesund (78°55' N 11°52' E) during the period from 1991 to 2006. It is well-known that relative humidity measurements are less reliable at low temperatures when measured with standard radiosondes. The data was corrected for errors and used to determine key characteristic features of the vertical and temporal relative humidity evolution in the Arctic troposphere over Ny-Ålesund. We present frequencies of occurrence of ice-supersaturation layers in the troposphere, their vertical span, temperature and statistical distribution. Supersaturation with respect to ice shows a clear seasonal behaviour. In winter, (October–February) it occurred in 19% of all cases and less frequently in spring (March–May 12%), and summer (June–September, 9%). Finally, the results are compared with findings from the SAGE II satellite instrument on subvisible clouds.


2018 ◽  
Vol 146 (9) ◽  
pp. 2891-2911 ◽  
Author(s):  
Shu-Jeng Lin ◽  
Kun-Hsuan Chou

Abstract This study investigates the size changes of tropical cyclones (TCs) traversing the Philippines based on a 37-yr statistical analysis. TC size is defined by the radius of 30-kt (≈15.4 m s−1) wind speed (R30) from the best track data of the Japan Meteorological Agency. A total of 71 TCs passed the Philippines during 1979–2015. The numbers of size increase (SI; 36) and size decrease (SD; 34) cases are very similar; however, the last 15 years have seen more SI cases (17) than SD cases (11). SI and SD cases mostly occur along northerly and southerly paths, respectively, after TCs pass the Philippines. Before landfall, SI cases have small initial sizes and weak intensities, but SD cases have larger initial sizes and stronger intensities. After landfall, most SI cases are intensifying storms, and most SD cases are nonintensifying storms. Composite analyses of vertical wind shear, absolute angular momentum flux, relative humidity, and sea surface temperature between SI and SD cases are compared. All of these values are larger in SI cases than in SD cases. Furthermore, the interdecadal difference in the ratio of the numbers of SI to SD cases reveals an unusually high number of SI cases during 2001–15. The synoptic patterns between 1979–2000 and 2001–15 are analyzed. The high SI ratio in the latter period is related to strong southwesterly wind in the south of the South China Sea that raised relative humidity, warmed the sea surface, and increased import of angular momentum flux.


2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2008 ◽  
Vol 6 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Predrag Kolarz ◽  
Dusan Filipovic

Diurnal atmospheric air-ion concentrations have been investigated at a site where synchronous aerosol, ozone, temperature and relative humidity measurements were also made. Air-ions, temperature and relative humidity were measured with Gerdien type Cylindrical Detector of Air-Ions (CDI-06) made in the Institute of Physics, Belgrade. Ozone and aerosols were measured with commercial instruments owned by the Institute of Public Health, Belgrade. Typical daily variations of the measured parameters were analyzed and showed that air-ions of both signs and ozone are positively correlated, while aerosols show strong inverse correlation with air-ions. Also, concentrations of air-ions and ozone are decreasing with temperature while aerosol concentration and humidity are increasing. These processes could be explained concerning properties of the specified parameters, measuring place properties and weather conditions.


2020 ◽  
Vol 12 (16) ◽  
pp. 2631
Author(s):  
Marian Amoakowaah Osei ◽  
Leonard Kofitse Amekudzi ◽  
Craig R. Ferguson ◽  
Sylvester Kojo Danuor

The vertical profiles of temperature and water vapour from the Atmospheric InfraRed Sounder (AIRS) have been validated across various regions of the globe as an effort to provide a substitute for radiosonde observations. However, there is a paucity of inter-comparisons over West Africa where local convective processes dominate and radiosonde observations (RAOBs) are limited. This study validates AIRS temperature and relative humidity profiles for selected radiosonde stations in West Africa. Radiosonde data were obtained from the AMMA and DACCIWA campaigns which spanned 2006–2008 and June–July 2016 respectively and offered a period of prolonged radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root mean square difference (RMSD) at seven RAOB stations which were grouped into coastal and inland. Evaluation was performed on diurnal and seasonal timescales, cloud screening conditions and derived thunderstorm instability indices. At all timescales, the temperature RMSD was higher than the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory with deviations <20% and <50% for both lower and upper troposphere respectively. AIRS retrieval of water vapour under cloudy and cloud-free conditions had no significant difference whereas cloud-free temperature was found to be more accurate. The seasonal evolution of some thunderstorm convective indices were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolution of these indices imply it will be a useful dataset for the African Science for Weather Information and Forecasting Techniques (SWIFT) high impact weather studies.


1931 ◽  
Vol 5 (6) ◽  
pp. 625-635
Author(s):  
D. C. Rose

The Gerdian type of atmospheric ionization measuring apparatus was attached to a cabin aeroplane so that the state of ionization of the atmosphere could be studied. The limitations of the apparatus for aeroplane use are discussed. Measurements were taken from ground level to heights of 15000 ft. The results are plotted in number of ions per cc. (separate curves for positive and negative) at different altitudes.The results indicate that at the cloud level there is an abnormal excess of small positive ions and a minimum in the excess of positive ions over negative ions from 4000–6000 ft. higher. This does not include large ions such as charged water drops or dust particles. The observations were taken in regions free from clouds, the cloud level being determined by observation on clouds in the sky, and by relative humidity measurements taken at the same time.


Sign in / Sign up

Export Citation Format

Share Document