scholarly journals The SPARC water vapour assessment II: Profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites

Author(s):  
Stefan Lossow ◽  
Farahnaz Khosrawi ◽  
Michael Kiefer ◽  
Kaley A. Walker ◽  
Jean-Loup Bertaux ◽  
...  

Abstract. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data set specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 hPa and 5 hPa. Typically, they range from 0.25 ppmv to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases are overall increasing with altitude but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 ppmv and 1 ppmv (4 % to 20 %). Obvious data set specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 hPa to 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 ppmv decade−1 and 0.3 ppmv decade−1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. Like for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.

2019 ◽  
Vol 12 (5) ◽  
pp. 2693-2732 ◽  
Author(s):  
Stefan Lossow ◽  
Farahnaz Khosrawi ◽  
Michael Kiefer ◽  
Kaley A. Walker ◽  
Jean-Loup Bertaux ◽  
...  

Abstract. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmv decade−1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.


2018 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Stefan Lossow ◽  
Gabriele P. Stiller ◽  
Karen H. Rosenlof ◽  
Joachim Urban ◽  
...  

Abstract. Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies addressing e.g stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°–70° S), the tropics (15° S–15° N) and the northern hemisphere mid-latitudes (50° N–60° N) at four different altitudes (0.1, 3, 10 and 80 hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed considering the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratio among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that all data sets can be considered in the future in observational and modelling studies addressing e.g. stratospheric and lower mesospheric water vapour variability and trends when data set specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.


2018 ◽  
Vol 11 (7) ◽  
pp. 4435-4463 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Stefan Lossow ◽  
Gabriele P. Stiller ◽  
Karen H. Rosenlof ◽  
Joachim Urban ◽  
...  

Abstract. Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80∘–70∘ S), the tropics (15∘ S–15∘ N) and the Northern Hemisphere mid-latitudes (50∘–60∘ N) at four different altitudes (0.1, 3, 10 and 80 hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.


2021 ◽  
Author(s):  
Annika Vogel ◽  
Ghazi Alessa ◽  
Robert Scheele ◽  
Lisa Weber ◽  
Stephanie Fiedler

<p>Aerosols are known to affect atmospheric processes on a wide range of spatio-temporal scales, from dust storms reducing incoming solar radiation to aerosol-climate feedbacks. Although plenty of studies address aerosol radiative forcing, there are persistent differences in current aerosol estimates from both, observations and models. Global reanalyses are able to provide consistent estimates of aerosol distributions by combining these two data sources. However, continuous assimilation of single satellite products forces the analyses towards the satellites climatology including possible inaccuracies. This study investigates differences between current estimates of aerosol optical depth (AOD) by addressing two questions: (1.) How well do we know the large-scale spatio-temporal pattern of present-day AOD across state-of-the-art data? (2.) How does current global aerosol reanalyses perform in comparison to other model- and observation-based data sets? To answer these questions, AOD from the global CAMS and MERRA-2 reanalyses is compared to 8 satellite products, 1 established climatology and 4 multi-model ensembles. The comprehensive data set used in this study allows to evaluate the performance of individual products concerning different spatial and temporal aspects. The evaluation covers results from 1998 to 2019, including most recently available products like the climate model inter-comparison project CMIP6.</p><p>Spatially and temporally averaged AOD from MERRA-2 agrees well with the mean satellite climatology, while the CAMS climatology is higher than most other products. With relative standard deviations of about 11%, temporal variations of CAMS and MERRA-2 agree well with the mean satellite variation. However, averaged AOD from the individual satellites show large differences, ranging from 0.124 for MISR to 0.164 for MODIS. In addition to average differences, spatial patterns vary significantly between the individual data sets. Because the CAMS reanalysis only assimilates AOD from MODIS, it remains close to the MODIS climatology which overestimates AOD in most regions in comparison to other products. This overestimation is considerably increased over eastern China were CAMS simulates regional values of more than 1.2 during summer. By assimilating both, MODIS and MISR data, the MERRA-2 reanalysis is closer to the satellite mean under most conditions. Although annual deviations remain small compared to other models, MERRA-2 tends to underestimate AOD at the equator and overestimates AOD at higher latitudes especially during the winter-season. The spatio-temporal differences between individual aerosol data sets underline the need for further research on both satellite retrievals and model simulations for aerosols. For example, integrating multiple observations in a reanalysis system would allow to compensate for inaccuracies of the individual products. Further developing the multi-scale coupled ICON-ART system at the German Weather Service provides a promising environment to achieve accurate aerosol climatologies on high spatial resolution.</p>


2014 ◽  
Vol 7 (3) ◽  
pp. 3021-3073 ◽  
Author(s):  
M. Grossi ◽  
P. Valks ◽  
D. Loyola ◽  
B. Aberle ◽  
S. Slijkhuis ◽  
...  

Abstract. The knowledge of the total column water vapour (TCWV) global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors and perform an extensive inter-comparison and validation in order to estimate their absolute accuracy and long-term stability. We use the recently reprocessed data sets retrieved by the GOME-2 instruments aboard EUMETSAT's MetOp-A and MetOp-B satellites and generated by DLR in the framework of the O3M-SAF using the GOME Data Processor (GDP) version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS) method and combines H2O/O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. We evaluate the overall consistency between about 8 months measurements from the newer GOME-2 instrument on the MetOp-B platform with the GOME-2/MetOp-A data in the overlap period. Furthermore, we compare GOME-2 results with independent TCWV data from ECMWF and with SSMIS satellite measurements during the full period January 2007–August 2013 and we perform a validation against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project. We find global mean biases as small as ± 0.03 g cm−2 between GOME-2A and all other data sets. The combined SSM/I-MERIS sample is typically drier than the GOME-2 retrievals (−0.005 g cm−2), while on average GOME-2 data overestimate the SSMIS measurements by only 0.028 g cm−2. However, the size of some of these biases are seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, but are not as evident in the validation with the ECMWF and the SSM/I + MERIS data. Studying two exemplary months, we estimate regional differences and identify a very good agreement between GOME-2 total columns and all three independent data sets, especially for land areas, although some discrepancies over ocean and over land areas with high humidity and a relatively large surface albedo are also present.


2015 ◽  
Vol 8 (2) ◽  
pp. 1787-1832 ◽  
Author(s):  
J. Heymann ◽  
M. Reuter ◽  
M. Hilker ◽  
M. Buchwitz ◽  
O. Schneising ◽  
...  

Abstract. Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY onboard ENVISAT (March 2002–April 2012) and TANSO-FTS onboard GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3406
Author(s):  
Jie Jiang ◽  
Yin Zou ◽  
Lidong Chen ◽  
Yujie Fang

Precise localization and pose estimation in indoor environments are commonly employed in a wide range of applications, including robotics, augmented reality, and navigation and positioning services. Such applications can be solved via visual-based localization using a pre-built 3D model. The increase in searching space associated with large scenes can be overcome by retrieving images in advance and subsequently estimating the pose. The majority of current deep learning-based image retrieval methods require labeled data, which increase data annotation costs and complicate the acquisition of data. In this paper, we propose an unsupervised hierarchical indoor localization framework that integrates an unsupervised network variational autoencoder (VAE) with a visual-based Structure-from-Motion (SfM) approach in order to extract global and local features. During the localization process, global features are applied for the image retrieval at the level of the scene map in order to obtain candidate images, and are subsequently used to estimate the pose from 2D-3D matches between query and candidate images. RGB images only are used as the input of the proposed localization system, which is both convenient and challenging. Experimental results reveal that the proposed method can localize images within 0.16 m and 4° in the 7-Scenes data sets and 32.8% within 5 m and 20° in the Baidu data set. Furthermore, our proposed method achieves a higher precision compared to advanced methods.


2019 ◽  
Author(s):  
Matthew Gard ◽  
Derrick Hasterok ◽  
Jacqueline Halpin

Abstract. Dissemination and collation of geochemical data are critical to promote rapid, creative and accurate research and place new results in an appropriate global context. To this end, we have assembled a global whole-rock geochemical database, with other associated sample information and properties, sourced from various existing databases and supplemented with numerous individual publications and corrections. Currently the database stands at 1,023,490 samples with varying amounts of associated information including major and trace element concentrations, isotopic ratios, and location data. The distribution both spatially and temporally is quite heterogeneous, however temporal distributions are enhanced over some previous database compilations, particularly in terms of ages older than ~ 1000 Ma. Also included are a wide range of computed geochemical indices, physical property estimates and naming schema on a major element normalized version of the geochemical data for quick reference. This compilation will be useful for geochemical studies requiring extensive data sets, in particular those wishing to investigate secular temporal trends. The addition of physical properties, estimated by sample chemistry, represents a unique contribution to otherwise similar geochemical databases. The data is published in .csv format for the purposes of simple distribution but exists in a format acceptable for database management systems (e.g. SQL). One can either manipulate this data using conventional analysis tools such as MATLAB®, Microsoft® Excel, or R, or upload to a relational database management system for easy querying and management of the data as unique keys already exist. This data set will continue to grow, and we encourage readers to contact us or other database compilations contained within about any data that is yet to be included. The data files described in this paper are available at https://doi.org/10.5281/zenodo.2592823 (Gard et al., 2019).


2018 ◽  
Author(s):  
Brian Hie ◽  
Bryan Bryson ◽  
Bonnie Berger

AbstractResearchers are generating single-cell RNA sequencing (scRNA-seq) profiles of diverse biological systems1–4 and every cell type in the human body.5 Leveraging this data to gain unprecedented insight into biology and disease will require assembling heterogeneous cell populations across multiple experiments, laboratories, and technologies. Although methods for scRNA-seq data integration exist6,7, they often naively merge data sets together even when the data sets have no cell types in common, leading to results that do not correspond to real biological patterns. Here we present Scanorama, inspired by algorithms for panorama stitching, that overcomes the limitations of existing methods to enable accurate, heterogeneous scRNA-seq data set integration. Our strategy identifies and merges the shared cell types among all pairs of data sets and is orders of magnitude faster than existing techniques. We use Scanorama to combine 105,476 cells from 26 diverse scRNA-seq experiments across 9 different technologies into a single comprehensive reference, demonstrating how Scanorama can be used to obtain a more complete picture of cellular function across a wide range of scRNA-seq experiments.


2017 ◽  
Vol 44 (2) ◽  
pp. 203-229 ◽  
Author(s):  
Javier D Fernández ◽  
Miguel A Martínez-Prieto ◽  
Pablo de la Fuente Redondo ◽  
Claudio Gutiérrez

The publication of semantic web data, commonly represented in Resource Description Framework (RDF), has experienced outstanding growth over the last few years. Data from all fields of knowledge are shared publicly and interconnected in active initiatives such as Linked Open Data. However, despite the increasing availability of applications managing large-scale RDF information such as RDF stores and reasoning tools, little attention has been given to the structural features emerging in real-world RDF data. Our work addresses this issue by proposing specific metrics to characterise RDF data. We specifically focus on revealing the redundancy of each data set, as well as common structural patterns. We evaluate the proposed metrics on several data sets, which cover a wide range of designs and models. Our findings provide a basis for more efficient RDF data structures, indexes and compressors.


Sign in / Sign up

Export Citation Format

Share Document