scholarly journals Introduction to the in orbit test and its performance of the first meteorological imager of the Communication, Ocean, and Meteorological Satellite

2013 ◽  
Vol 6 (6) ◽  
pp. 10889-10920 ◽  
Author(s):  
D. Kim ◽  
M. H. Ahn

Abstract. The first geostationary earth observation satellite of Korea, named Communication, Ocean, and Meteorological Satellite (COMS), is successfully launched on 27 June 2010 in Korea Standard Time. After arrival of its operational orbit, the satellite underwent in orbit test (IOT) lasting for about 8 months. During the IOT period, the meteorological imager went through tests for its functional and performance demonstration. With the successful acquisition of the first visible channel image, signal chain from the payload to satellite bus and to the ground is also verified. While waiting for the outgassing operation, several functional tests for the payload are also performed. By taking an observation of different sizes of image, of various object targets such as the Sun, moon, and internal calibration target, it has been demonstrated that the payload performs as commanded, satisfying its functional requirements. After successful operation of outgassing which lasted about 40 days, the first set of infrared images is also successfully acquired and the full performance test started. The radiometric performance of the meteorological imager is tested by signal to noise ratio (SNR) for the visible channel, noise equivalent differential temperature (NEdT) for the infrared channels, and pixel to pixel non-uniformity. In case of the visible channel, SNR of all 8 detectors are obtained using the ground measured parameters and background signals obtained in orbit and are larger than 26 at 5% albedo, exceeding the user requirement value of 10 with a significant margin. The values at 100% albedo also meet the user requirements. Also, the relative variability of detector responsivity among the 8 visible channels meets the user requirement, showing values of about 10% of the user requrirement. For the infrared channels, the NEdT of each detector is well within the user requirement and is comparable with or better than the legacy instruments, except the water vapor channel which is slightly noisier than the legacy instruments. The variability of detector responsivity of infrared channels is also below the user requirement, within 40% of the requirement except shortwave infrared channel. The improved performance result is partly due to the stable and low detector temperature obtained with the spacecraft design, by installing a single solar panel to the opposite side of the meteorological imager.

2014 ◽  
Vol 7 (8) ◽  
pp. 2471-2485 ◽  
Author(s):  
D. H. Kim ◽  
M. H. Ahn

Abstract. The first geostationary Earth observation satellite of Korea – the Communication, Ocean, and Meteorological Satellite (COMS) – was successfully launched on 27 June 2010. After arrival at its operational orbit, the satellite underwent an in-orbit test (IOT) that lasted for about 8 months. During the IOT period, the main payload for the weather application, the meteorological imager, went through successful tests for demonstrating its function and performance, and the test results are introduced here. The radiometric performance of the meteorological imager (MI) is tested by means of signal-to-noise ratio (SNR) for the visible channel, noise-equivalent differential temperature (NEdT) for the infrared channels, and pixel-to-pixel nonuniformity for both the visible and infrared channels. In the case of the visible channel, the SNR of all eight detectors is obtained using the ground-measured parameters with the background signals obtained in orbit. The overall performance shows a value larger than 26 at 5% albedo, exceeding the user requirement of 10 by a significant margin. Also, the relative variability of detector responsivity among the eight visible channels meets the user requirement, showing values within 10% of the user requirement. For the infrared channels, the NEdT of each detector is well within the user requirement and is comparable with or better than the legacy instruments, except for the water vapor channel, which is slightly noisier than the legacy instruments. The variability of detector responsivity of infrared channels is also below the user requirement, within 40% of the requirement, except for the shortwave infrared channel. The improved performance result is partly due to the stable and low detector temperature obtained due to spacecraft design, i.e., by installing a single solar panel on the opposite side of the MI.


2013 ◽  
Vol 336-338 ◽  
pp. 1550-1553
Author(s):  
Li Xin Gao ◽  
Hong Shan Zha

This paper presents a pipelined RISC architecture processor. Five-stage pipeline is used to enhance the performance. Test results show that: the design of processor able to accurately perform all instructions, reaching the functional requirements, and greatly improved performance. Finally, implement the pipelined RISC processor in FPGA.


2016 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Jantri Sirait ◽  
Sulharman Sulharman

Has done design tool is a tool of refined coconut oil coconut grater, squeezer coconut milk and coconut oil heating, with the aim to streamline the time of making coconut oil and coconut oil increase production capacity. The research method consists of several stages, among others; image creation tool, procurement of materials research, cutting the material - the material framework of tools and performance test tools. The parameters observed during the performance test tools is time grated coconut, coconut milk bleeder capacity, the capacity of the boiler and the heating time of coconut oil. The design tool consists of three parts, namely a tool shaved coconut, coconut milk wringer and coconut milk heating devices. Materials used for the framework of such tools include iron UNP 6 meters long, 7.5 cm wide, 4 mm thick, while the motor uses an electric motor 0.25 HP 1430 rpm and to dampen the rotation electric motor rotation used gearbox with a ratio of round 1 : 60. the results of the design ie the time required for coconut menyerut average of 297 seconds, coconut milk wringer capacity of 5 kg of processes and using gauze pads to filter coconut pulp, as well as the heating process takes ± 2 hours with a capacity of 80 kg , The benefits of coconut oil refined tools are stripping time or split brief coconut average - average 7 seconds and coconut shell can be used as craft materials, processes extortion coconut milk quickly so the production capacity increased and the stirring process coconut oil mechanically.ABSTRAKTelah dilakukan rancang bangun alat olahan minyak kelapa yaitu alat pemarut kelapa, pemeras santan kelapa dan pemanas minyak kelapa, dengan tujuan untuk mengefisiensikan waktu pembuatan minyak kelapa serta meningkatkan kapasitas produksi minyak kelapa. Metode penelitian terdiri dari beberapa tahapan antara lain; pembuatan gambar alat, pengadaan bahan-bahan penelitian, pemotongan bahan - bahan rangka alat dan uji unjuk kerja alat. Parameter yang diamati pada saat uji unjuk kerja alat adalah waktu parut kelapa, kapasitas pemeras santan kelapa, kapasitas tungku pemanas serta waktu pemanasan minyak kelapa. Rancangan alat terdiri dari tiga bagian yaitu alat penyerut kelapa, alat pemeras santan kelapa dan alat pemanas santan kelapa. Bahan yang dipergunakan untuk rangka alat tersebut  yaitu besi UNP panjang 6 meter, lebar 7,5 cm, tebal 4 mm, sedangkan untuk motor penggerak menggunakan motor listrik 0,25 HP 1430 rpm dan untuk meredam putaran putaran motor listrik dipergunakan gearbox  dengan perbandingan putaran 1 : 60. Hasil dari rancangan tersebut yaitu waktu yang dibutuhkan untuk menyerut kelapa rata-rata 297 detik, kapasitas alat pemeras santan kelapa 5 kg sekali proses dan menggunakan kain kassa untuk menyaring ampas kelapa, serta Proses pemanasan membutuhkan waktu ± 2 jam dengan kapasitas 80 kg. Adapun keunggulan alat olahan minyak kelapa ini adalah waktu pengupasan atau belah kelapa singkat rata – rata 7 detik dan tempurung kelapa dapat digunakan sebagai bahan kerajinan, proses pemerasan santan kelapa cepat sehingga kapasitas produksi meningkat dan proses pengadukan minyak kelapa secara mekanis. Kata kunci : penyerut, pemeras, pemanas,minyak kelapa,olahan minyak kelapa.


Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


2021 ◽  
Author(s):  
Zhan Su ◽  
Zhao Ding ◽  
Liquan Tian ◽  
Xue Lin ◽  
Zhiming Wang

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


2011 ◽  
Vol 77 (775) ◽  
pp. 573-581
Author(s):  
Isamu TSUJI ◽  
Hiroshi GUNBARA ◽  
Kazumasa KAWASAKI ◽  
Yoshikazu ABE ◽  
Kazutaka SUZUKI ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 128
Author(s):  
Sergej Lackmann ◽  
Pierre-Majorique Léger ◽  
Patrick Charland ◽  
Caroline Aubé ◽  
Jean Talbot

Millions of students follow online classes which are delivered in video format. Several studies examine the impact of these video formats on engagement and learning using explicit measures and outline the need to also investigate the implicit cognitive and emotional states of online learners. Our study compared two video formats in terms of engagement (over time) and learning in a between-subject experiment. Engagement was operationalized using explicit and implicit neurophysiological measures. Twenty-six (26) subjects participated in the study and were randomly assigned to one of two conditions based on the video shown: infographic video or lecture capture. The infographic video showed animated graphics, images, and text. The lecture capture showed a professor, providing a lecture, filmed in a classroom setting. Results suggest that lecture capture triggers greater emotional engagement over a shorter period, whereas the infographic video maintains higher emotional and cognitive engagement over longer periods of time. Regarding student learning, the infographic video contributes to significantly improved performance in matters of difficult questions. Additionally, our results suggest a significant relationship between engagement and student performance. In general, the higher the engagement, the better the student performance, although, in the case of cognitive engagement, the link is quadratic (inverted U shaped).


Sign in / Sign up

Export Citation Format

Share Document