scholarly journals ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet

2006 ◽  
Vol 24 (6) ◽  
pp. 1639-1648 ◽  
Author(s):  
V. A. Mazur ◽  
A. S. Leonovich

Abstract. A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz) registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.

1981 ◽  
Vol 26 (2) ◽  
pp. 369-383
Author(s):  
R. Lucas

Sufficient conditions for the stability of parallel flow of a warm N-component cylindrical plasma to electrostatic perturbations are obtained. In the unperturbed state the jth plasma component is assumed to have axial velocity Vj0(r), r being the radial co-ordinate, and the equilibrium quantities are permitted to be arbitrary functions of r consistent with the zeroth-order equations. The L2-norms of certain system variables are shown to be bounded uniformly in time. Circle theorems are obtained for the complex eigenfrequencies of any normal mode.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2008 ◽  
Vol 86 (3) ◽  
pp. 477-485
Author(s):  
Ahmed E Radwan ◽  
Mourad F Dimian

The magneto–gravitational stability of double-fluid interface is discussed. The pressure in the unperturbed state is not constant because the self-gravitating force is a long-range force. The dispersion relation is derived and discussed. The self-gravitating model is unstable in the symmetric mode m = 0 (m is the transverse wave number), while it is stable in all other states. The effects of the densities, the liquid-fluid radii ratios, and the electromagnetic force on the stability of the present model are identified for all wavelengths.PACS Nos.: 47.35.Tv, 47.65.–d, 04.40.–b


2005 ◽  
Vol 23 (3) ◽  
pp. 1075-1079 ◽  
Author(s):  
A. S. Leonovich ◽  
V. A. Mazur

Abstract. A new concept of the global magnetospheric resonator is suggested for fast magnetosonic waves in which the role of the resonator is played by the near-Earth part of the plasma sheet. It is shown that the magnetosonic wave is confined in this region of the magnetosphere within its boundaries. The representative value of the resonator's eigenfrequency estimated at f~1MHz is in good agreement with observational data of ultra-low-frequency MHD oscillations of the magnetosphere with a discrete spectrum (f~0.8, 1.3, 1.9, 2.6...MHz). The theory explains the ground-based localization of the oscillations observed in the midnight-morning sector of the high-latitude magnetosphere.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650111
Author(s):  
Yi Liu ◽  
Rong-Jun Cheng ◽  
Yan-Qiang Ma ◽  
Hong-Xia Ge

Based on multi-phase car-following model proposed by Nagatani, the control theory method is used to analyze the stability of the model. The optimal velocity function is improved to have more turning points. The original optimal velocity with one turning point shows two-phase traffic, while the improved model with [Formula: see text] turning points exhibits [Formula: see text] phase traffic. Control signal is added into the model. Numerical simulation is conducted to show the results for the stability of the model with and without control signal.


2011 ◽  
Vol 672 ◽  
pp. 5-32 ◽  
Author(s):  
OUTI TAMMISOLA ◽  
ATSUSHI SASAKI ◽  
FREDRIK LUNDELL ◽  
MASAHARU MATSUBARA ◽  
L. DANIEL SÖDERBERG

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).


1979 ◽  
Vol 46 (2) ◽  
pp. 454-456
Author(s):  
S. O. Onyegegbu

This Note examines the effect of vertical periodic motion on the stability characteristics of a viscoelastic fluid layer in a classical Benard geometry. Numerical solutions show that a resonant type behavior which enhances stability occurs at oscillation frequencies near the convective natural frequency of the viscoelastic fluid, while the effect of the periodic motion vanishes as the oscillation frequency gets very large.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 173-177
Author(s):  
M. Cremer ◽  
M. Scholer

Abstract. We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.


1978 ◽  
Vol 45 (3) ◽  
pp. 469-474 ◽  
Author(s):  
D. B. Bogy

The linearized form of the inviscid, one-dimensional Cosserat jet equations derived by Green [6] are used to study wave propagation in a circular jet with surface tension. The frequency spectra are shown for complex wave numbers for a complete range of Weber numbers. The propagation characteristics of the waves are studied in order to determine which branches of the frequency spectra to use in the semi-infinite jet problem with harmonic forcing at the nozzle. Two of the four branches are eliminated by a radiation condition that energy must be outgoing at infinity; the remaining two branches are used to satisfy the nozzle boundary conditions. The variation of the jet radius along its length is shown graphically for various Weber numbers and forcing frequencies. The stability or instability is explained in terms of the behavior of the two propagating phases.


1972 ◽  
Vol 8 (3) ◽  
pp. 387-391
Author(s):  
V. V. Demchenko ◽  
I. A. El-Naggar

The stability of hydrodynamic longitudinal oscillations of an inhomogeneous magnetoactive plasma is analysed. If the non-uniformity of density is taken into account, it is shown to result in parametric-like instability at sub- and ultra- harmonics of natural plasma oscillation frequencies. The conditions for the development of unstable oscillations and their growth rates are determined.


Sign in / Sign up

Export Citation Format

Share Document