scholarly journals THEMIS observation of a substorm event on 04:35, 22 February 2008

2009 ◽  
Vol 27 (5) ◽  
pp. 1831-1841 ◽  
Author(s):  
J. Liu ◽  
V. Angelopoulos ◽  
H. Frey ◽  
J. McFadden ◽  
D. Larson ◽  
...  

Abstract. We report on THEMIS in-situ and ground-based observations during a substorm between 04:30~04:50 UT on 22 February 2008. The spacecraft (probes) were aligned along the tail between XGSM=−5 RE to −25 RE. The most distant probe P1 (X=−24.5 RE) detected two successive tailward moving bipolar magnetic structures. P2 (X=−18 RE), P3 (X=−11 RE), P4 (X=−10.5 RE) all captured signatures related to the Earthward movement of a magnetic structure. THEMIS ground stations and all-sky imagers also recorded Pi2 pulsations and a sudden brightening in a white-light auroral imager followed by poleward expansion. We perform a detailed timing analysis of probe and ground-based data and reconstruct the time sequence of phenomena during this substorm. The earliest sign of substorm onset was the bipolar perturbation in the northward component of the magnetic field (interpreted as the result of reconnection onset) at P1 at 04:35:16 UT and corresponding magnetic perturbation at P2 at 04:35:14 UT. Auroral onset was seen at or before 04:36:55 UT, consistent with the visual onset of high-latitude magnetic pulsations at around that time. Earthward flows at P3 and P4 seen at ~04:36:03 UT, and dipolarization onset at ~04:36:50 UT, were observed at almost the same time as the ground onset signature, implying that near-Earth dipolarization happened in the aftermath of tail reconnection but not significantly ahead of the auroral intensification. Reconnection in the tail preceded ground onset and near-Earth dipolarization (current disruption) by ~2 min. Two reconnection pulses (the first one weaker than the second one) accompanied by correlative increases of cumulative magnetic flux transfer into the reconnection region were observed. A direct association of the reconnection pulses with two auroral intensifications can be made, suggesting that tail reconnection, like the auroral expansion, advances in steps rather than continuously.

Author(s):  
Carol Paty ◽  
Chris S. Arridge ◽  
Ian J. Cohen ◽  
Gina A. DiBraccio ◽  
Robert W. Ebert ◽  
...  

The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind–magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems'.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


2020 ◽  
Author(s):  
Ovidiu Dragoş Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

Abstract. In situ measurement of the magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and time required to build a spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removal of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program and allowing for shorter boom length. The proposed algorithm is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean geostationary satellite GeoKompsat-2A (GK2A) which uses for the first time a multi-sensor configuration for onboard data cleaning. The successful elimination of disturbances originating from several sources validates the proposed cleaning technique.


2021 ◽  
Author(s):  
Philippa Browning ◽  
Mykola Gordovskyy ◽  
Satashi Inoue ◽  
Eduard Kontar ◽  
Kanya Kusano ◽  
...  

<p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>


1980 ◽  
Vol 91 ◽  
pp. 547-552 ◽  
Author(s):  
M. Kuperus

Solar and interplanetary dynamics comprises dynamic and plasma-physical phenomena in the solar atmosphere, the corona and the interplanetary medium in the broadest sense. In this symposium, however, one has essentially tried to restrict the subject matter to the study of the propagation of a disturbance, produced in the solar atmosphere, through the corona and the interplanetary medium. In studying solar and interplanetary dynamical phenomena we find ourselves in the unique position, with respect to other astrophysical disciplines, to be able to relate solar observations obtained with the highest possible spectral, spatial and time resolution with in situ measurements made in the interplanetary medium. It has now turned out that the two fundamental questions to be answered are:a) How does the medium in between the sun and the earth and beyond the earth's orbit, the socalled heliosphere, look like? Does a basic undisturbed heliosphere actually exist, and is one able to model its observed magnetic structures and plasma motions with their spatial and temporal variations?b) How and where in the solar atmosphere are the disturbances generated and what are the characteristic time scales, geometries and energies involved?


2018 ◽  
Vol 1100 ◽  
pp. 012007
Author(s):  
G Consolini ◽  
V Quattrociocchi ◽  
M F Marcucci

1979 ◽  
Vol 57 (6) ◽  
pp. 884-889 ◽  
Author(s):  
J. M. Perz ◽  
I. M. Templeton

The derivatives with respect to hydrostatic pressure of 12 extremal cross-sectional areas of the Fermi surface of tetragonal white (β) tin have been measured by the fluid helium de Haas van Alphen phase shift technique. The samples were carefully aligned in situ to have a crystal symmetry axis ([001], [100], or [110]) parallel to the magnetic field. The measured derivatives differ significantly from most values found previously by both direct and indirect methods; it is believed that the present work provides the first reliable comprehensive determination of these quantities. The present experiments also confirm the conclusions of magnetostriction experiments that there is a second orbit normal to [100] on the sixth zone surface not identified in earlier conventional de Haas van Alphen work, and that the third zone extremal areas normal to [001] are larger than previously accepted values determined in de Haas van Alphen studies.


2016 ◽  
Vol 34 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Erika Palmerio ◽  
Emilia K. J. Kilpua ◽  
Neel P. Savani

Abstract. Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85 % of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67 %) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68 % of the PMS plane normals near the shock were separated by less than 20° from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.


1981 ◽  
Vol 94 ◽  
pp. 373-391
Author(s):  
Gerhard Haerendel

Two processes are discussed which violate the frozen-in condition in a highly conducting plasma, reconnection and the auroral acceleration process. The first applies to situations in which . It plays an important role in the interaction of the solar wind with the Earth's magnetic field and controls energy input into as well as energetic particle release from the magnetosphere. Detailed in situ studies of the process on the dayside magnetopause reveal its transient and small-scale nature. The auroral acceleration process occurs in the low magnetosphere (β « 1) and accompanies sudden releases of magnetic shear stresses which exist in large-scale magnetospheric-ionospheric current circuits. The process is interpreted as a kind of breaking. The movements of the magnetospheric plasma which lead to a relief of the magnetic tensions occur in thin sheets and are decoupled along the magnetic field lines by parallel electric potential drops. It is this voltage that accelerates the primary auroral particles. The visible arcs are then traces of the magnetic breaking process at several 1000 km altitude.


2009 ◽  
Vol 27 (1) ◽  
pp. 319-328 ◽  
Author(s):  
A. Runov ◽  
V. Angelopoulos ◽  
V. A. Sergeev ◽  
K.-H. Glassmeier ◽  
U. Auster ◽  
...  

Abstract. A sequence of magnetic field oscillations with an amplitude of up to 30 nT and a time scale of 30 min was detected by four of the five THEMIS spacecraft in the magnetotail plasma sheet. The probes P1 and P2 were at X=−15.2 and −12.7 RE and P3 and P4 were at X=−7.9 RE. All four probes were at −6.5>Y>−7.5 RE (major conjunction). Multi-point timing analysis of the magnetic field variations shows that fronts of the oscillations propagated flankward (dawnward and Earthward) nearly perpendicular to the direction of the magnetic maximum variation (B1) at velocities of 20–30 km/s. These are typical characteristics of current sheet flapping motion. The observed anti-correlation between ∂B1/∂t and the Z-component of the bulk velocity make it possible to estimate a flapping amplitude of 1 to 3 RE. The cross-tail scale wave-length was found to be about 5 RE. Thus the flapping waves are steep tail-aligned structures with a lengthwise scale of >10 RE. The intermittent plasma motion with the cross-tail velocity component changing its sign, observed during flapping, indicates that the flapping waves were propagating through the ambient plasma. Simultaneous observations of the magnetic field variations by THEMIS ground-based magnetometers show that the flapping oscillations were observed during the growth phase of a substorm.


Sign in / Sign up

Export Citation Format

Share Document