scholarly journals Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP

2009 ◽  
Vol 27 (5) ◽  
pp. 2087-2099 ◽  
Author(s):  
S. Müller ◽  
H. Lühr ◽  
S. Rentz

Abstract. We have studied the dependence of the thermospheric mass density at equatorial latitudes on the influence of various drivers. This statistical study is based on CHAMP accelerometer measurements. Our aim is to delineate the influences of the different contributions. For the isolation of the effects we make use of a dedicated data selection procedure and/or removal of disturbing effects. In a first step all readings are normalised to an altitude of 400 km. For the investigation of the solar influences only magnetically quiet days (Ap≤15) are considered. The dependence on solar flux can well be described by a linear relation within the flux range F10.7=80–240. The slope is twice as steep on the day side as on the night side. The air density exhibits clear annual and semi-annual variations with maxima at the equinoxes and a pronounced minimum around June solstice. The thermosphere maintains during quiet days a day to night mass density ratio very close to 2, which is independent of solar flux level or season. The magnetospheric input causing thermospheric density enhancement can well be parameterised by the am activity index. The low latitude density responds with a delay to changes of the index by about 3 h on the dayside and 4–5 h on the night side. The magnetospheric forcing causes an additive contribution to the quiet-time density, which is linearly correlated with the am index. The slopes of density increases are the same on the day and night sides. We present quantitative expressions for all the dependences. Our results suggest that all the studied forcing terms can be treated as linear combinations of the respective contribution.

1999 ◽  
Vol 104 (A8) ◽  
pp. 17091-17106 ◽  
Author(s):  
M. A. Biondi ◽  
S. Y. Sazykin ◽  
B. G. Fejer ◽  
J. W. Meriwether ◽  
C. G. Fesen

2008 ◽  
Vol 26 (9) ◽  
pp. 2807-2823 ◽  
Author(s):  
S. Rentz ◽  
H. Lühr

Abstract. We report on the thermospheric mass density anomaly in the vicinity of the ionospheric cusp. A systematic survey of the anomalies is presented, based on a statistical analysis of 4 years of data (2002–2005) obtained by the accelerometer onboard CHAMP. The anomalies are detected during all years and seasons in both hemispheres but with stronger signatures in the Northern Hemisphere. For the same geophysical conditions, solar flux and geomagnetic activity the anomalies in the north are larger by a factor of about 1.35. Over the course of the survey period the amplitude decreases by more than a factor of 5 while the level of solar flux reduces by a factor of 2. The anomaly strength also depends on the solar wind input. The merging electric field, Emerg, is generally enhanced for about an hour before the anomaly detection. There is a quadratic response of the anomaly amplitude to Emerg. For geophysical conditions of P10.7<150 and Emerg<1 mV/m hardly any events are detected. Their amplitudes are found to be controlled by an additive effect of P10.7 and Emerg, where the weight of Emerg, in mV/m, is by about 50 times higher than that of the solar flux level. The solar zenith angle and the influence of particle precipitation are found to play a minor role as a controlling parameter of seasonal variation. The well-known annual variation of the thermospheric density with a minimum around June also influences the formation of the cusp anomalies. This leads to a clear hemispheric asymmetry with very weak anomalies in the south during June solstice, which is supposed to be a combined effect of the minimum in annual variation and the seasonal decrease of solar insolation in this region.


Author(s):  
Ying-Hong Liu ◽  
Chien C. Chang ◽  
Ruey-Lin Chern ◽  
C. Chung Chang

In this study, we investigate band structures of phononic crystals with particular emphasis on the effects of the mass density ratio and of the contrast of elastic constants. The phononic crystals consist of arrays of different media embedded in a rubber or epoxy. It is shown that the density ratio rather than the contrast of elastic constants is the dominant factor that opens up phononic band gaps. The physical background of this observation is explained by applying the theory of homogenization to investigate the group velocities of the low-frequency bands at the center of symmetry Γ.


2019 ◽  
Vol 37 (4) ◽  
pp. 657-672
Author(s):  
Claudia M. N. Candido ◽  
Jiankui Shi ◽  
Inez S. Batista ◽  
Fabio Becker-Guedes ◽  
Emília Correia ◽  
...  

Abstract. We present a case study of unusual spread-F structures observed by ionosondes at two equatorial and low-latitude Brazilian stations – São Luís (SL: 44.2∘ W, 2.33∘ S; dip angle: −6.9∘) and Fortaleza (FZ: 38.45∘ W, 3.9∘ S; dip angle: −16∘). The irregularity structures observed from midnight to postmidnight hours of moderate solar activity (F10.7 < 97 sfu, where 1 sfu = 10−22 W m−2 s−1) have characteristics different from typical post-sunset equatorial spread F. The spread-F traces first appeared at or above the F-layer peak and gradually became well-formed mixed spread F. They also appeared as plasma depletions in the 630.0 nm airglow emissions made by a wide-angle imager located at the nearby low-latitude station Cajazeiras (CZ: 38.56∘ W, 6.87∘ S; dip angle: −21.4∘). The irregularities appeared first over FZ and later over SL, giving evidence of an unusual westward propagation or a horizontal plasma advection. The drift-mode operation available in one of the ionosondes (a digital portable sounder, DPS-4) has enabled us to analyze the horizontal drift velocities and directions of the irregularity movement. We also analyzed the neutral wind velocity measured by a Fabry–Pérot interferometer (FPI) installed at CZ and discuss its possible role in the development of the irregularities.


2008 ◽  
Vol 26 (8) ◽  
pp. 2111-2130 ◽  
Author(s):  
V. V. Denisenko ◽  
H. K. Biernat ◽  
A. V. Mezentsev ◽  
V. A. Shaidurov ◽  
S. S. Zamay

Abstract. A quantitative division of the ionosphere into dynamo and motor regions is performed on the base of empirical models of space distributions of ionospheric parameters. Pedersen and Hall conductivities are modified to represent an impact of acceleration of the medium because of Ampére's force. It is shown that the currents in the F2 layer are greatly reduced for processes of a few hours duration. This reduction is in particular important for the night-side low-latitude ionosphere. The International Reference Ionosphere model is used to analyze the effect quantitatively. This model gives a second high conducting layer in the night-side low-latitude ionosphere that reduces the electric field and equatorial electrojets, but intensifies night-side currents during the short-term events. These currents occupy regions which are much wider than those of equatorial electrojets. It is demonstrated that the parameter σd=σP+σHΣH/ΣP that involves the integral Pedersen and Hall conductances ΣP, ΣH ought to be used instead of the local Cowling conductivity σC in calculations of the electric current density in the equatorial ionosphere. We may note that Gurevich et al. (1976) derived a parameter similar to σd for more general conditions as those which we discuss in this paper; a more detailed description of this point is given in Sect. 6. Both, σd and σC, appear when a magnetic field line is near a nonconducting domain which means zero current through the boundary of this domain. The main difference between σd and σC is that σd definition includes the possibility for the electric current to flow along a magnetic field line in order to close all currents which go to this line from neighboring ones. The local Cowling conductivity σC corresponds to the current closure at each point of a magnetic field line. It is adequate only for a magnetic field line with constant local conductivity at the whole line when field-aligned currents do not exist because of symmetry, but σC=σd in this case. So, there is no reason to use the local Cowling conductivity while the Cowling conductance ΣC=ΣP+ΣH2/ΣP is a useful and well defined parameter.


1993 ◽  
Vol 254 ◽  
pp. 671-699 ◽  
Author(s):  
Kek-Kiong Tio ◽  
Amable Liñán ◽  
Juan C. Lasheras ◽  
Alfonso M. Gañán-Calvo

In this paper, we study the dynamics of small, spherical, rigid particles in a spatially periodic array of Stuart vortices given by a steady-state solution to the two-dimensional incompressible Euler equation. In the limiting case of dominant viscous drag forces, the motion of the particles is studied analytically by using a perturbation scheme. This approach consists of the analysis of the leading-order term in the expansion of the ‘particle path function’ Φ, which is equal to the stream function evaluated at the instantaneous particle position. It is shown that heavy particles which remain suspended against gravity all move in a periodic asymptotic trajectory located above the vortices, while buoyant particles may be trapped by the stable equilibrium points located within the vortices. In addition, a linear map for Φ is derived to describe the short-term evolution of particles moving near the boundary of a vortex. Next, the assumption of dominant viscous drag forces is relaxed, and linear stability analyses are carried out to investigate the equilibrium points of the five-parameter dynamical system governing the motion of the particles. The five parameters are the free-stream Reynolds number, the Stokes number, the fluid-to-particle mass density ratio, the distribution of vorticity in the flow, and a gravitational parameter. For heavy particles, the equilibrium points, when they exist, are found to be unstable. In the case of buoyant particles, a pair of stable and unstable equilibrium points exist simultaneously, and undergo a saddle-node bifurcation when a certain parameter of the dynamical system is varied. Finally, a computational study is also carried out by integrating the dynamical system numerically. It is found that the analytical and computational results are in agreement, provided the viscous drag forces are large. The computational study covers a more general regime in which the viscous drag forces are not necessarily dominant, and the effects of the various parametric inputs on the dynamics of buoyant particles are investigated.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Emilio Márquez ◽  
Juan J. Ruíz-Pérez ◽  
Manuel Ballester ◽  
Almudena P. Márquez ◽  
Eduardo Blanco ◽  
...  

Several, nearly-1-µm-thick, pure, unhydrogenated amorphous-silicon (a-Si) thin layers were grown at high rates by non-equilibrium rf-magnetron Ar-plasma sputtering (RFMS) onto room-temperature low-cost glass substrates. A new approach is employed for the optical characterization of the thin-layer samples, which is based on some new formulae for the normal-incidence transmission of such a samples and on the adoption of the inverse-synthesis method, by using a devised Matlab GUI environment. The so-far existing limiting value of the thickness-non-uniformity parameter, Δd, when optically characterizing wedge-shaped layers, has been suppressed with the introduction of the appropriate corrections in the expression of transmittance. The optical responses of the H-free RFMS-a-Si thin films investigated, were successfully parameterized using a single, Kramers–Krönig (KK)-consistent, Tauc–Lorentz oscillator model, with the inclusion in the model of the Urbach tail (TLUC), in the present case of non-hydrogenated a-Si films. We have also employed the Wemple–DiDomenico (WDD) single-oscillator model to calculate the two WDD dispersion parameters, dispersion energy, Ed, and oscillator energy, Eso. The amorphous-to-crystalline mass-density ratio in the expression for Ed suggested by Wemple and DiDomenico is the key factor in understanding the refractive index behavior of the a-Si layers under study. The value of the porosity for the specific rf-magnetron sputtering deposition conditions employed in this work, with an Ar-pressure of ~4.4 Pa, is found to be approximately 21%. Additionally, it must be concluded that the adopted TLUC parameterization is highly accurate for the evaluation of the UV/visible/NIR transmittance measurements, on the H-free a-Si investigated. Finally, the performed experiments are needed to have more confidence of quick and accurate optical-characterizations techniques, in order to find new applications of a-Si layers in optics and optoelectronics.


2019 ◽  
Vol 622 ◽  
pp. A151 ◽  
Author(s):  
Holly L. Capelo ◽  
Jan Moláček ◽  
Michiel Lambrechts ◽  
John Lawson ◽  
Anders Johansen ◽  
...  

Forming macroscopic solid bodies in circumstellar discs requires local dust concentration levels significantly higher than the mean. Interactions of the dust particles with the gas must serve to augment local particle densities, and facilitate growth past barriers in the metre size range. Amongst a number of mechanisms that can amplify the local density of solids, aerodynamic streaming instability (SI) is one of the most promising. This work tests the physical assumptions of models that lead to SI in protoplanetary discs (PPDs). We conduct laboratory experiments in which we track the three-dimensional motion of spherical solid particles fluidised in a low-pressure, laminar, incompressible, gas stream. The particle sizes span the Stokes–Epstein drag regime transition and the overall dust-to-gas mass density ratio,ϵ, is close to unity. A recently published study establishes the similarity of the laboratory flow to a simplified PPD model flow. We study velocity statistics and perform time-series analysis of the advected flow to obtain experimental results suggesting an instability due to particle-gas interaction: (i) there exist variations in particle concentration in the direction of the mean relative motion between the gas and the particles, that is the direction of the mean drag forces; (ii) the particles have a tendency to “catch up” to one another when they are in proximity; (iii) particle clumping occurs on very small scales, which implies local enhancements above the backgroundϵby factors of several tens; (iv) the presence of these density enhancements occurs for a meanϵapproaching or greater than 1; (v) we find evidence for collective particle drag reduction when the local particle number density becomes high and when the background gas pressure is high so that the drag is in the continuum regime. The experiments presented here are precedent-setting for observing SI under controlled conditions and may lead to a deeper understanding of how it operates in nature.


2008 ◽  
Vol 26 (9) ◽  
pp. 2911-2921 ◽  
Author(s):  
V. V. Kumar ◽  
M. L. Parkinson ◽  
P. L. Dyson ◽  
R. Polglase

Abstract. Diurnal patterns of average F-region ionospheric drift (electric field) and their dependence on solar and geomagnetic activity have been defined using digital ionosonde Doppler measurements recorded at a southern mid-latitude station (Bundoora 145.1° E, 37.7° S geographic, 49° S magnetic). A unique database consisting of 300 907 drift velocities was compiled, mostly using one specific mode of operation throughout 1632 days of a 5-year interval (1999–2003). The velocity magnitudes were generally larger during the night than day, except during the winter months (June–August), when daytime velocities were enhanced. Of all years, the largest drifts tended to occur during the high speed solar wind streams of 2003. Diurnal patterns in the average quiet time (AE<75 nT) meridional drifts (zonal electric field) peaked at up to ~6 m s−1 poleward (0.3 mV m−1 eastward) at 03:30 LST, reversing in direction at ~08:30 LST, and gradually reaching ~10 m s−1 equatorward at ~13:30 LST. The quiet time zonal drifts (meridional electric fields) displayed a clear diurnal pattern with peak eastward flows of ~10 m s−1 (0.52 mV m−1 equatorward) at 09:30 LST and peak westward flows around midnight of ~18 m s−1 (0.95 mV m−1 poleward). As the AE index increased, the westward drifts increased in amplitude and they extended over a greater fraction of the day. The perturbation drifts changed in a similar way with decreasing Dst except the daytime equatorward flows strengthened with increasing AE index, whereas they became weak for Dst<−60 nT. The responses in all velocity components to changing solar flux values were small, but net poleward perturbations during the day were associated with large solar flux values (>192×10−22 W m−2 Hz−1). These results help to more fully quantify the response of the mid-latitude ionosphere to changing solar and geomagnetic conditions, as required to refine empirical and theoretical models of mid-latitude electric fields.


Sign in / Sign up

Export Citation Format

Share Document