scholarly journals Crowdsourcing of weather observations at national meteorological and hydrological services in Europe

2018 ◽  
Vol 15 ◽  
pp. 71-76 ◽  
Author(s):  
Thomas Krennert ◽  
Georg Pistotnik ◽  
Rainer Kaltenberger ◽  
Christian Csekits

Abstract. National Meteorological and Hydrological Services (NMHSs) increase their efforts to deliver impact-based weather forecasts and warnings. At the same time, a desired increase in cost-efficiency prompts these services to automatize their weather station networks and to reduce the number of human observers, which leads to a lack of “ground truth” information about weather phenomena and their impact. A possible alternative is to encourage the general public to submit weather observations, which may include crucial information especially in high-impact situations. We wish to provide an overview of the state and properties of existing collaborations between NMHSs and voluntary weather observers or storm spotters across Europe. For that purpose, we performed a survey among 30 European NMHSs, from which 22 NMHSs returned our questionnaire. This study summarizes the most important findings and evaluates the use of “crowdsourced” information. 86 % of the surveyed NMHSs utilize information provided by the general public, 50 % have established official collaborations with spotter groups, and 18 % have formalized them. The observations are most commonly used for a real-time improvement of severe weather warnings, their verification, and an establishment of a climatology of severe weather events. The importance of these volunteered weather and impact observations has strongly risen over the past decade. We expect that this trend will continue and that storm spotters will become an essential part in severe weather warning, like they have been for decades in the United States of America. A rising number of incoming reports implies that quality management will become an increasing issue, and we finally discuss an idea how to handle this challenge.

2021 ◽  
Author(s):  
Ananya Pandya ◽  
Nathalie Popovic ◽  
Alexandra Diehl ◽  
Ian Ruginski ◽  
Sara Fabrikant ◽  
...  

<p>Effective communication of potential weather hazards and its uncertainty to the general public is key to prevent and mitigate negative outcomes from weather hazards. The general public needs effective tools at hand that can allow them to make the best decision as possible during a severe weather event. Currently, there are many approaches for weather forecast visualization, such as contour and thematic maps [5]. However, guidelines and best practices in visualization can help to improve these designs and make them more effective [1, 2].</p><p>In this work, we present several interactive visual designs for mobile visualization of severe weather events for the communication of weather hazards, their risks, uncertainty, and recommended actions. Our approach is based on previous work on uncertainty visualization [5], cognitive science [6], and decision sciences for risk management [3, 4]. We propose six configurations that vary the ratio of text vs graphics used in the visual display, and the interaction workflow needed for a non-expert user to make an informed decision and effective actions. Our goal is to test how efficient these configurations are and to what degree they are suitable to communicate weather hazards, associated uncertainty, risk, and recommended actions to non-experts. Future steps include two cycle of evaluations, consisting of a first pilot to rapidly test the prototype with a small number of participants, collect actionable insights, and incorporate potential improvements. In a second user study, we will perform a crowd-sourced extensive evaluation of the visualization prototypes.</p><p><strong>References</strong></p><p>[1] A. Diehl, A. Abdul-Rahman, M. El-Assady, B. Bach, D. A. Keim, and M. Chen. Visguides: A forum for discussing visualization guidelines. In <em>Proceedings of the EuroVis Short Papers</em>, pages 61–65, 2018.</p><p>[2]  A. Diehl, E. E. Firat, T. Torsney-Weir, A. Abdul-Rahman, B. Bach, R. S. Laramee, R. Pajarola, and M. Chen. VisGuided: A community-driven approach for education in visualization.  In Proceedings Eurographics Education Papers, to appear, 2021.</p><p>[3] N. Fleischhut and S. M. Herzog. Wie laesst sich die unsicherheit von vorhersagen sinnvoll kommu- nizieren? In <em>Wetterwarnungen: Von der Extremereignisinformation zu Kommunikation und Handlung. Beiträge aus dem Forschungsprojekt WEXICOM</em>, pages 63–81. 2019.</p><p>[4] G. Gigerenzer, R. Hertwig, E. Van Den Broek, B. Fasolo, and K. V. Katsikopoulos. “A 30% chance of rain tomorrow”: How does the public understand probabilistic weather forecasts? <em>Risk Analysis: An International Journal</em>, 25(3):623–629, 2005.</p><p>[5] I. Kübler, K.-F. Richter, and S. I. Fabrikant. Against all odds: multicriteria decision making with hazard prediction maps depicting uncertainty. <em>Annals of the American Association of Geographers</em>, 110(3):661–683, 2020.</p><p>[6] L. M. Padilla, I. T. Ruginski, and S. H. Creem-Regehr. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. <em>Cognitive research: principles and implications</em>, 2(1):1–16, 2017.</p>


2016 ◽  
Vol 144 (10) ◽  
pp. 3799-3823 ◽  
Author(s):  
Glen S. Romine ◽  
Craig S. Schwartz ◽  
Ryan D. Torn ◽  
Morris L. Weisman

Over the central Great Plains, mid- to upper-tropospheric weather disturbances often modulate severe storm development. These disturbances frequently pass over the Intermountain West region of the United States during the early morning hours preceding severe weather events. This region has fewer in situ observations of the atmospheric state compared with most other areas of the United States, contributing toward greater uncertainty in forecast initial conditions. Assimilation of supplemental observations is hypothesized to reduce initial condition uncertainty and improve forecasts of high-impact weather. During the spring of 2013, the Mesoscale Predictability Experiment (MPEX) leveraged ensemble-based targeting methods to key in on regions where enhanced observations might reduce mesoscale forecast uncertainty. Observations were obtained with dropsondes released from the NSF/NCAR Gulfstream-V aircraft during the early morning hours preceding 15 severe weather events over areas upstream from anticipated convection. Retrospective data-denial experiments are conducted to evaluate the value of dropsonde observations in improving convection-permitting ensemble forecasts. Results show considerable variation in forecast performance from assimilating dropsonde observations, with a modest but statistically significant improvement, akin to prior targeted observation studies that focused on synoptic-scale prediction. The change in forecast skill with dropsonde information was not sensitive to the skill of the control forecast. Events with large positive impact sampled both the disturbance and adjacent flow, akin to results from past synoptic-scale targeting studies, suggesting that sampling both the disturbance and adjacent flow is necessary regardless of the horizontal scale of the feature of interest.


Author(s):  
Friederike Otto

Natural disasters and extreme weather events have been of great societal importance throughout history and often brought everyday life to a catastrophic halt, in a way sometimes comparable to wars and epidemics, only without the lead time. Extreme weather events with large impacts serve as an anchor point of the collective memory of the population in the affected area. Every northern German of the right age remembers the storm surge of 1962 and where they were at the time and has friends or family effected by the event. The “dust bowl” of the 1930s with extensive droughts and heat waves shaped the life of a generation in the United States, and the Sahel droughts in the 1960s and 1970s led to famine and dislocation of population on a massive scale the region arguably never quite recovered from. Hurricane Hyian in 2013 is said to have directly influenced the outcome of the annual Conference of the Parties (COP) United Nation Framework Convention for Climate Change Negotiations in Warsaw, leading to the inclusion of a mechanism to deal with loss and damage from climate-related disasters. Though earthquakes are still fairly unpredictable on short timescales, this is not the case for weather events. Weather forecasts today are so good that we normally know the time and location of the landfall of a hurricane within a 100-mile radius days in advance. Improvements in the prediction of slow-onset events such as droughts (which depend on the rainfall over a large region and whole season) are less striking but have still improved dramatically in the late 20th and early 21st centuries. One of the major reasons for the large increase in the accuracy of weather forecasts is the exponential increase in computing power, which allows scientists to predict and study extreme weather events using complex computer models, simulating possible weather events under certain conditions to understand the statistics of and physical mechanisms behind extreme events. Extreme events are by definition rare and thus impossible to understand from historical records of weather observation alone. Despite the progress on our understanding of and ability to predict extreme weather events, substantial uncertainties remain. Two aspects are of particular importance. Firstly, we know that the climate is changing, having observed almost a one-degree increase in global mean temperature. However, global mean temperature doesn’t kill anyone, extreme weather events do. Their frequency and intensity is changing and will continue to change, but the extent of these changes depends on a host of both global and local factors. Secondly, whether or not a rare weather event leads to extreme impacts depends largely on the vulnerability and exposure of the affected societies. If these are high, even a perfectly forecasted weather event leads to disaster.


2010 ◽  
Vol 25 (4) ◽  
pp. 1082-1102 ◽  
Author(s):  
Peter C. Banacos ◽  
Michael L. Ekster

Abstract The occurrence of rare but significant severe weather events associated with elevated mixed-layer (EML) air in the northeastern United States is investigated herein. A total of 447 convective event days with one or more significant severe weather report [where significant is defined as hail 2 in. (5.1 cm) in diameter or greater, a convective gust of 65 kt (33 m s−1) or greater, and/or a tornado of F2 or greater intensity] were identified from 1970 through 2006 during the warm season (1 May–30 September). Of these, 34 event days (7.6%) were associated with identifiable EML air in regional rawinsondes preceding the event. Taken with two other noteworthy events in 1953 and 1969, a total of 36 significant severe weather events associated with EML air were studied via composite and trajectory analysis. Though a small percentage of the total, these 36 events compose a noteworthy list of historically significant derechos and tornadic events to affect the northeastern United States. It is demonstrated that plumes of EML air emanating from the Intermountain West in subsiding, anticyclonically curved flows can reinforce the capping inversion and maintain the integrity of the EML across the central United States over a few days. The EML plume can ultimately become entrained into a moderately fast westerly to northwesterly midtropospheric flow allowing for the plume’s advection into the northeastern United States. Resultant thermodynamic conditions in the convective storm environment are similar to those more typically observed closer to the EML source region in the Great Plains of the United States. In addition to composite and trajectory analysis, two case studies are employed to demonstrate salient and evolutionary aspects of the EML in such events. A lapse rate tendency equation is explored to put EML advection in context with other processes affecting lapse rate.


2020 ◽  
Vol 35 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Makenzie J. Krocak ◽  
Harold E. Brooks

Abstract One of the challenges of providing probabilistic information on a multitude of spatiotemporal scales is ensuring that information is both accurate and useful to decision-makers. Focusing on larger spatiotemporal scales (i.e., from convective outlook to weather watch scales), historical severe weather reports are analyzed to begin to understand the spatiotemporal scales that hazardous weather events are contained within. Reports from the Storm Prediction Center’s report archive are placed onto grids of differing spatial scales and then split into 24-h convective outlook days (1200–1200 UTC). These grids are then analyzed temporally to assess over what fraction of the day a single location would generally experience severe weather events. Different combinations of temporal and spatial scales are tested to determine how the reference class (or the choice of what scales to use) alters the probabilities of severe weather events. Results indicate that at any given point in the United States on any given day, more than 95% of the daily reports within 40 km of the point occur in a 4-h period. Therefore, the SPC 24-h convective outlook probabilities can be interpreted as 4-h convective outlook probabilities without a significant change in meaning. Additionally, probabilities and threat periods are analyzed at each location and different times of year. These results indicate little variability in the duration of severe weather events, which allows for a consistent definition of an “event” for all locations in the continental United States.


2020 ◽  
Author(s):  
Karina Wilgan ◽  
Jens Wickert ◽  
Galina Dick ◽  
Florian Zus ◽  
Torsten Schmidt ◽  
...  

<p>Global Navigation Satellite Systems (GNSS) have revolutionized positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is currently established as a powerful and versatile observation tool for geosciences. An outstanding application in this context is the operational monitoring of atmospheric water vapor with high spatiotemporal resolution. The water vapor is the most abundant greenhouse gas, which accounts for about 70% of atmospheric warming and plays a key role in the atmospheric energy exchange. The precise knowledge of its highly variable spatial and temporal distribution is a precondition for precise modeling of the atmospheric state as a base for numerical weather forecasts especially with focus to the strong precipitation and severe weather events.</p><p>The data from European GNSS networks are widely operationally used to improve regional weather forecasts in several countries. However, the impact of the currently provided data products to the forecast systems is still limited due to the exclusively focusing on GPS-only based data products; to the limited atmospheric information content, which is provided mostly in the zenith direction and to the time delay between measurement and providing the data products, which is currently about one hour.</p><p>AMUSE is a recent research project, funded by the DFG (German Research Council) and performed in close cooperation of TUB, GFZ and DWD during 2020-2022. The project foci are the major limitations of currently operationally used generation of GNSS-based water vapor data. AMUSE will pioneer the development of next generation data products. Main addressed innovations are:  1) Developments to provide multi-GNSS instead of GPS-only data, including GLONASS, Galileo and BeiDou; 2) Developments to provide high quality slant observations, containing water vapor information along the line-of-sight from the respective ground stations; 3) Developments to shorten the delay between measurements and the provision of the products to the meteorological services.</p><p>This GNSS-focused work of AMUSE will be complemented by the contribution of German Weather Service DWD to investigate in detail and to quantify the forecast improvement, which can be reached by the new generation GNSS-based meteorology data. Several dedicated forecast experiments will be conducted with focus on one of the most challenging issues, the precipitation forecast in case of severe weather events. These studies will support the future assimilation of the new generation data to the regional forecast system of DWD and potentially also to other European weather services.</p>


2003 ◽  
Vol 20 (2) ◽  
pp. 61-70 ◽  
Author(s):  
David R. DeWalle ◽  
Anthony R. Buda ◽  
Ann Fisher

Abstract Projected climate change could have major effects on forest management because of the potential for increased frequency, duration, and/or severity of extreme weather events. We surveyed public and private forestland management groups in the Mid-Atlantic region of the United States to better understand current interactions between extreme weather events and forest land management and to help predict future impacts. Our questionnaire addressed the importance and types of problems created by extreme weather events, the coping strategies employed to mitigate problems, and the overall economic effects of extreme weather. Responses were received from 322 forest managers/users (54% response rate) primarily representing state natural resources agencies, forestry consulting firms, large industrial forestry companies and smaller logging companies. Overall, respondents rated the impacts of extreme weather on their operations as low to modest; however, over 20% experienced “major” effects because of extreme weather over the past 10 yr. The highest rated impacts were: (1) reduced access to forestland because of flooding, deep snow, or wind- and ice-damaged trees; (2) increased costs for road and facility maintenance, and (3) direct damage to trees by wind, snow, or ice and subsequent effects on timber supplies and market prices. Mitigation strategies most commonly mentioned were switching of silvicultural systems and changing site preparation and planting schemes, but most respondents had not altered their management due to extreme weather. When asked about effects of a hypothetical 25% increase in severe weather, the most common mitigation strategy was increased investment in new equipment and facilities. Short-term economic impacts of severe weather varied between “supply increasing” conditions associated with increased tree damage and salvage operations and “supply decreasing” conditions related to reduced access to forest land. Increased severe weather due to climate change can be expected to have small to modest effects on forest management and users overall, but areas subjected to hurricanes and ice storms within the Mid-Atlantic region appear to be more sensitive to impacts of severe weather. North. J. Appl. For. 20(2):61–70.


2021 ◽  
Vol 10.47389/36 (No 1) ◽  
pp. 76-83
Author(s):  
Serena Schroeter ◽  
Harald Richter ◽  
Craig Arthur ◽  
David Wilke ◽  
Mark Dunford ◽  
...  

National meteorological and hydrological services provide severe weather warning information to inform decision-making by emergency management organisations. Such information also helps communities to take defensive and mitigating actions prior to and during severe weather events. Globally, warning information issued by meteorological and hydrological services varies widely. This can range from solely hazard-based to impact-based forecasting encompassing the exposure and vulnerability of communities to severe weather. The most advanced of these systems explicitly and quantitatively model the impacts of hazards on affected assets or infrastructure such as vehicle traffic or housing. Incorporating impact information into severe weather warnings contextualises and personalises the warning information, increasing the likelihood that individuals and communities will take preparatory action. However, providing useful and detailed impact information remains a challenge. This paper reviews a selection of current severe weather warnings and impact forecasting capabilities globally and highlights uncertainties that limit the forecasting and modelling of multi-hazard events.


Author(s):  
N.S. / Sidorenkov ◽  

The transformations of synoptic processes and severe weather events that sometimes accompany them occur near the extremes (maxima and minima) of tidal fluctuations in the Earth’s angular velocity. A graph of tidal fluctuations in the Earth’s angular velocity for 2021 is presented. The extremes of tidal fluctuations in the Earth’s angular velocity for 2021 are identified and their calendar dates are determined. On these dates, the transformation of synoptic processes and sometimes hydrometeorological hazards may be expected. The case of catastrophic icing in the Vladivostok area during the extreme on November 18, 2020 is described. Keywords: transformation of synoptic processes, weather forecasts, severe weather events, tidal fluctuations in the Earth’s angular velocity


2018 ◽  
Vol 8 (2) ◽  
pp. 100-111 ◽  
Author(s):  
Maik Friedrich ◽  
Christoph Möhlenbrink

Abstract. Owing to the different approaches for remote tower operation, a standardized set of indicators is needed to evaluate the technical implementations at a task performance level. One of the most influential factors for air traffic control is weather. This article describes the influence of weather metrics on remote tower operations and how to validate them against each other. Weather metrics are essential to the evaluation of different remote controller working positions. Therefore, weather metrics were identified as part of a validation at the Erfurt-Weimar Airport. Air traffic control officers observed weather events at the tower control working position and the remote control working position. The eight participating air traffic control officers answered time-synchronized questionnaires at both workplaces. The questionnaires addressed operationally relevant weather events in the aerodrome. The validation experiment targeted the air traffic control officer’s ability to categorize and judge the same weather event at different workplaces. The results show the potential of standardized indicators for the evaluation of performance and the importance of weather metrics in relation to other evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document