On the problem of interrelation between extreme lunisolar tides in 2021 and weather change

Author(s):  
N.S. / Sidorenkov ◽  

The transformations of synoptic processes and severe weather events that sometimes accompany them occur near the extremes (maxima and minima) of tidal fluctuations in the Earth’s angular velocity. A graph of tidal fluctuations in the Earth’s angular velocity for 2021 is presented. The extremes of tidal fluctuations in the Earth’s angular velocity for 2021 are identified and their calendar dates are determined. On these dates, the transformation of synoptic processes and sometimes hydrometeorological hazards may be expected. The case of catastrophic icing in the Vladivostok area during the extreme on November 18, 2020 is described. Keywords: transformation of synoptic processes, weather forecasts, severe weather events, tidal fluctuations in the Earth’s angular velocity

2020 ◽  
Author(s):  
Karina Wilgan ◽  
Jens Wickert ◽  
Galina Dick ◽  
Florian Zus ◽  
Torsten Schmidt ◽  
...  

<p>Global Navigation Satellite Systems (GNSS) have revolutionized positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is currently established as a powerful and versatile observation tool for geosciences. An outstanding application in this context is the operational monitoring of atmospheric water vapor with high spatiotemporal resolution. The water vapor is the most abundant greenhouse gas, which accounts for about 70% of atmospheric warming and plays a key role in the atmospheric energy exchange. The precise knowledge of its highly variable spatial and temporal distribution is a precondition for precise modeling of the atmospheric state as a base for numerical weather forecasts especially with focus to the strong precipitation and severe weather events.</p><p>The data from European GNSS networks are widely operationally used to improve regional weather forecasts in several countries. However, the impact of the currently provided data products to the forecast systems is still limited due to the exclusively focusing on GPS-only based data products; to the limited atmospheric information content, which is provided mostly in the zenith direction and to the time delay between measurement and providing the data products, which is currently about one hour.</p><p>AMUSE is a recent research project, funded by the DFG (German Research Council) and performed in close cooperation of TUB, GFZ and DWD during 2020-2022. The project foci are the major limitations of currently operationally used generation of GNSS-based water vapor data. AMUSE will pioneer the development of next generation data products. Main addressed innovations are:  1) Developments to provide multi-GNSS instead of GPS-only data, including GLONASS, Galileo and BeiDou; 2) Developments to provide high quality slant observations, containing water vapor information along the line-of-sight from the respective ground stations; 3) Developments to shorten the delay between measurements and the provision of the products to the meteorological services.</p><p>This GNSS-focused work of AMUSE will be complemented by the contribution of German Weather Service DWD to investigate in detail and to quantify the forecast improvement, which can be reached by the new generation GNSS-based meteorology data. Several dedicated forecast experiments will be conducted with focus on one of the most challenging issues, the precipitation forecast in case of severe weather events. These studies will support the future assimilation of the new generation data to the regional forecast system of DWD and potentially also to other European weather services.</p>


2021 ◽  
Author(s):  
Ananya Pandya ◽  
Nathalie Popovic ◽  
Alexandra Diehl ◽  
Ian Ruginski ◽  
Sara Fabrikant ◽  
...  

<p>Effective communication of potential weather hazards and its uncertainty to the general public is key to prevent and mitigate negative outcomes from weather hazards. The general public needs effective tools at hand that can allow them to make the best decision as possible during a severe weather event. Currently, there are many approaches for weather forecast visualization, such as contour and thematic maps [5]. However, guidelines and best practices in visualization can help to improve these designs and make them more effective [1, 2].</p><p>In this work, we present several interactive visual designs for mobile visualization of severe weather events for the communication of weather hazards, their risks, uncertainty, and recommended actions. Our approach is based on previous work on uncertainty visualization [5], cognitive science [6], and decision sciences for risk management [3, 4]. We propose six configurations that vary the ratio of text vs graphics used in the visual display, and the interaction workflow needed for a non-expert user to make an informed decision and effective actions. Our goal is to test how efficient these configurations are and to what degree they are suitable to communicate weather hazards, associated uncertainty, risk, and recommended actions to non-experts. Future steps include two cycle of evaluations, consisting of a first pilot to rapidly test the prototype with a small number of participants, collect actionable insights, and incorporate potential improvements. In a second user study, we will perform a crowd-sourced extensive evaluation of the visualization prototypes.</p><p><strong>References</strong></p><p>[1] A. Diehl, A. Abdul-Rahman, M. El-Assady, B. Bach, D. A. Keim, and M. Chen. Visguides: A forum for discussing visualization guidelines. In <em>Proceedings of the EuroVis Short Papers</em>, pages 61–65, 2018.</p><p>[2]  A. Diehl, E. E. Firat, T. Torsney-Weir, A. Abdul-Rahman, B. Bach, R. S. Laramee, R. Pajarola, and M. Chen. VisGuided: A community-driven approach for education in visualization.  In Proceedings Eurographics Education Papers, to appear, 2021.</p><p>[3] N. Fleischhut and S. M. Herzog. Wie laesst sich die unsicherheit von vorhersagen sinnvoll kommu- nizieren? In <em>Wetterwarnungen: Von der Extremereignisinformation zu Kommunikation und Handlung. Beiträge aus dem Forschungsprojekt WEXICOM</em>, pages 63–81. 2019.</p><p>[4] G. Gigerenzer, R. Hertwig, E. Van Den Broek, B. Fasolo, and K. V. Katsikopoulos. “A 30% chance of rain tomorrow”: How does the public understand probabilistic weather forecasts? <em>Risk Analysis: An International Journal</em>, 25(3):623–629, 2005.</p><p>[5] I. Kübler, K.-F. Richter, and S. I. Fabrikant. Against all odds: multicriteria decision making with hazard prediction maps depicting uncertainty. <em>Annals of the American Association of Geographers</em>, 110(3):661–683, 2020.</p><p>[6] L. M. Padilla, I. T. Ruginski, and S. H. Creem-Regehr. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. <em>Cognitive research: principles and implications</em>, 2(1):1–16, 2017.</p>


2018 ◽  
Vol 15 ◽  
pp. 71-76 ◽  
Author(s):  
Thomas Krennert ◽  
Georg Pistotnik ◽  
Rainer Kaltenberger ◽  
Christian Csekits

Abstract. National Meteorological and Hydrological Services (NMHSs) increase their efforts to deliver impact-based weather forecasts and warnings. At the same time, a desired increase in cost-efficiency prompts these services to automatize their weather station networks and to reduce the number of human observers, which leads to a lack of “ground truth” information about weather phenomena and their impact. A possible alternative is to encourage the general public to submit weather observations, which may include crucial information especially in high-impact situations. We wish to provide an overview of the state and properties of existing collaborations between NMHSs and voluntary weather observers or storm spotters across Europe. For that purpose, we performed a survey among 30 European NMHSs, from which 22 NMHSs returned our questionnaire. This study summarizes the most important findings and evaluates the use of “crowdsourced” information. 86 % of the surveyed NMHSs utilize information provided by the general public, 50 % have established official collaborations with spotter groups, and 18 % have formalized them. The observations are most commonly used for a real-time improvement of severe weather warnings, their verification, and an establishment of a climatology of severe weather events. The importance of these volunteered weather and impact observations has strongly risen over the past decade. We expect that this trend will continue and that storm spotters will become an essential part in severe weather warning, like they have been for decades in the United States of America. A rising number of incoming reports implies that quality management will become an increasing issue, and we finally discuss an idea how to handle this challenge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Estrada ◽  
Dukpa Kim ◽  
Pierre Perron

AbstractDue to various feedback processes called Arctic amplification, the high-latitudes’ response to increases in radiative forcing is much larger than elsewhere in the world, with a warming more than twice the global average. Since the 1990’s, this rapid warming of the Arctic was accompanied by no-warming or cooling over midlatitudes in the Northern Hemisphere in winter (the hiatus). The decrease in the thermal contrast between Arctic and midlatitudes has been connected to extreme weather events in midlatitudes via, e.g., shifts in the jet stream towards the equator and increases in the probability of high-latitude atmospheric blocking. Here we present an observational attribution study showing the spatial structure of the response to changes in radiative forcing. The results also connect the hiatus with diminished contrast between temperatures over regions in the Arctic and midlatitudes. Recent changes in these regional warming trends are linked to international actions such as the Montreal Protocol, and illustrate how changes in radiative forcing can trigger unexpected responses from the climate system. The lesson for climate policy is that human intervention with the climate is already large enough that even if stabilization was attained, impacts from an adjusting climate are to be expected.


Author(s):  
Enrico Solazzo ◽  
Pierre-Yves Tournigand ◽  
Stefano Barindelli ◽  
Valerio Guglieri ◽  
Eugenio Realini ◽  
...  

2016 ◽  
Vol 46 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Erin J. Belval ◽  
Yu Wei ◽  
Michael Bevers

Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations for a wildland fire. Simplified suppression decisions take the form of “suppression nodes”, which are placed on a raster landscape for multiple decision stages. Weather scenarios are used to represent a distribution of probable changes in fire behavior in response to random weather changes, modeled using probabilistic weather trees. Multistage suppression decisions and fire behavior respond to these weather events and to each other. Nonanticipativity constraints ensure that suppression decisions account for uncertainty in weather forecasts. Test cases for this model provide examples of fire behavior interacting with suppression to achieve a minimum expected area impacted by fire and suppression.


2010 ◽  
Vol 27 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Patrick N. Gatlin ◽  
Steven J. Goodman

Abstract An algorithm that provides an early indication of impending severe weather from observed trends in thunderstorm total lightning flash rates has been developed. The algorithm framework has been tested on 20 thunderstorms, including 1 nonsevere storm, which occurred over the course of six separate days during the spring months of 2002 and 2003. The identified surges in lightning rate (or jumps) are compared against 110 documented severe weather events produced by these thunderstorms as they moved across portions of northern Alabama and southern Tennessee. Lightning jumps precede 90% of these severe weather events, with as much as a 27-min advance notification of impending severe weather on the ground. However, 37% of lightning jumps are not followed by severe weather reports. Various configurations of the algorithm are tested, and the highest critical success index attained is 0.49. Results suggest that this lightning jump algorithm may be a useful operational diagnostic tool for severe thunderstorm potential.


Author(s):  
Heather A. Cross ◽  
Dennis Cavanaugh ◽  
Christopher C. Buonanno ◽  
Amy Hyman

For many emergency managers (EMs) and National Weather Service (NWS) forecasters, Convective Outlooks issued by the Storm Prediction Center (SPC) influence the preparation for near-term severe weather events. However, research into how and when EMs utilize that information, and how it influences their emergency operations plan, is limited. Therefore, to better understand how SPC Convective Outlooks are used for severe weather planning, a survey was conducted of NWS core partners in the emergency management sector. The results show EMs prefer to wait until an Enhanced Risk for severe thunderstorms is issued to prepare for severe weather. In addition, the Day 2 Convective Outlook serves as the threshold for higher, value-based decision making. The survey was also used to analyze how the issuance of different risk levels in SPC Convective Outlooks impact emergency management preparedness compared to preparations conducted when a Convective Watch is issued.


2016 ◽  
Vol 97 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Frauke Hoss ◽  
Paul Fischbeck

Abstract Emergency managers (EMs) use National Weather Service (NWS) forecasts to prepare for and respond to severe weather events. To effectively facilitate such decision making, the NWS needs to understand this large and important group of clients. EMs translate the forecasts to local topography, suggest actions to take in preparation of high water levels, and use their local network and reputation to make people act. For this study, 17 EMs in towns along rivers were interviewed and asked to describe their use of river and weather forecasts. Forecast uncertainty is one of the many uncertainties an EM has to manage when coordinating an emergency response. Each of the interviewed EMs who uses river forecasts was acutely aware that river forecasts often have substantial uncertainty. To cope with this uncertainty, EMs engage in extensive information gathering before forming their own judgments. However, EMs often do not communicate their judgment of the situation to the public, fearing potential liability claims and backlash from the media. For emergency management decisions, while EMs do consider forecast data, they rely heavily on recorded data and monitoring crews, limiting the benefits of forecasts that can be made with significant lead time. This paper arrives at recommendations for the NWS on how to increase the value of river and weather forecasts for decision making in emergency management.


Author(s):  
Pawel Golaszewski ◽  
Pawel Wielgosz ◽  
Katarzyna Stepniak

GNSS is an important source of meteorological data. GNSS measurements can provide tropospheric Zenith Wet Delays (ZWD) over wide area covered with permanent stations. In addition, when using surface synoptical data, GNSS can provide Integrated Water Vapor (IWV) which is very valuable information utilized in weather forecasts and severe weather monitoring. Hence, there is a need to test and validate various algorithms and software used for ZWD estimation. In this research, the accuracy of the ZWD estimates was tested using two different software packages: Bernese GNSS Software v.5.2 and G-Nut/Tefnut. In addition, their computational load was evaluated. The GNSS data were obtained from POTS permanent station, which is located in Potsdam, Germany. To validate the estimation results, the derived ZWD was transformed into the IWV, and afterwards compared to the reference IWV measured by the collocated Microwave Radiometer. In addition, the ZWD estimates were also compared to the EUREF final solution.


Sign in / Sign up

Export Citation Format

Share Document