scholarly journals A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging

2017 ◽  
Vol 14 (8) ◽  
pp. 2089-2100 ◽  
Author(s):  
Stephanie L. Strother ◽  
Ulrich Salzmann ◽  
Francesca Sangiorgi ◽  
Peter K. Bijl ◽  
Jörg Pross ◽  
...  

Abstract. Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene–Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampered by uncertainties in unambiguously identifying non-reworked as opposed to reworked sporomorphs that have been transported into Antarctic marine sedimentary records by waxing and waning ice sheets. Whereas reworked sporomorph grains over longer non-successive geological timescales are easily identifiable within younger sporomorph assemblages (e.g. Permian sporomorphs in Pliocene sediments), distinguishing non-reworked from reworked material in palynological assemblages over successive geological time periods (e.g. Eocene sporomorphs in Oligocene sediments) has remained problematic. This study presents a new quantitative approach to identifying non-reworked pollen assemblages in marine sediment cores from circum-Antarctic waters. We measured the fluorescence colour signature, including red, green, and blue fluorescence; brightness; intensity; and saturation values of selected pollen and spore taxa from Eocene, Oligocene, and Miocene sediments from the Wilkes Land margin Site U1356 (East Antarctica) recovered during Integrated Ocean Drilling Program (IODP) Expedition 318. Our study identified statistically significant differences in red-fluorescence values of non-reworked sporomorph taxa against age. We conclude that red fluorescence is a reliable parameter for identifying the presence of non-reworked pollen and spores in Antarctic marine sediment records from the circum-Antarctic realm that are influenced by glaciation and extensive reworking. Our study provides a new tool to accurately reconstruct Cenozoic terrestrial climate change on Antarctica using fossil pollen and spores.

2016 ◽  
Author(s):  
Stephanie L. Strother ◽  
Ulrich Salzmann ◽  
Francesca Sangiorgi ◽  
Peter K. Bijl ◽  
Jörg Pross ◽  
...  

Abstract. Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene/Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampered by uncertainties in unambiguously identifying in situ as opposed to reworked sporomorphs that have been transported into Antarctic marine sedimentary records by waxing and waning ice sheets. Whereas reworked sporomorph grains over longer non-successive geological time scales are easily identifiable within younger sporomorph assemblages (e.g., Permian sporomorphs in Pliocene sediments), distinguishing in situ from reworked material in palynological assemblages over successive geological time periods (e.g., Eocene sporomorphs in Oligocene sediments) has remained problematic. This study presents a new quantitative approach to identifying in situ grains from a marine sediment core from circum-Antarctic waters. We measured the fluorescence signature and mean red, green and blue, brightness, intensity and saturation values of selected pollen and spore taxa from Eocene, Oligocene and Miocene sediments from the Wilkes Land margin Site U1356 (East Antarctica) recovered during Integrated Ocean Drilling Program (IODP) Expedition 318. Our study identified statistically significant differences in mean red fluorescence values of in situ sporomorph taxa against age. We conclude that red fluorescence is a reliable parameter to identify the presence of in situ pollen and spores in Antarctic marine sediment records from the circum-Antarctic realm that are influenced by glaciation and extensive reworking. Our study provides an essential new tool required to accurately reconstruct Cenozoic terrestrial climate change on Antarctica using fossil pollen and spores.


2021 ◽  
Author(s):  
Sokaina Tadoumant ◽  
Ilham Bouimetarhan ◽  
Martin Koelling ◽  
Asmae Baqloul ◽  
Lhoussaine Bouchaou

<p>      Terrestrial signals in marine sediment archives are frequently used for paleoclimate reconstructions. A little is known about the origin of terrestrial components such as pollen and spores, organic and inorganic elements in the sedimentary archives. The aims of this study is to investigate the geographic distribution pattern of pollen and spores in southern Morocco in relation to environmental gradients, and different transport mechanisms in order to link temporal variations in marine sediment cores to environmental changes in southern Morocco. Pollen taxa of Argania spinosa, Cichorioideae, Poaceae and Cyperaceae exhibit high percentages and concentrations in the semi-arid Souss Massa basin and the relatively humid Tensift basin accompanied with higher values of Fe/Ca and Ti/Al. Moreover, the simulation between distribution of Olea/Phillyrea and Ti/Al ratio suggests that Olea/Phillyrea are mainly dispersed by wind transport. However, Artemisia and Quercus distributions are limited to the south of High Atlas and the northern Anti Atlas. Chenopodiaceae, Caryophyllaceae , and Amaranthaceae (CCA) show a maximum percentages in littoral sites especially of Souss and Draa basins according to the important production of pollen quantities, the  high values of CCA from north to south of study area are indicated the starts of Saharan-type climate with increasing values of Acacia, Ziziphus, Asphodelus and Tamarix taxa may indicate plants adaptation to droughts, and/or a dominant aeolian transport. The South of Morocco which is known by higher wind inflows and low rainfall during the year occurring as occasional events during the winter, we conclude that pollen are primarily transported by the NE trade winds and occasionally with rivers in the basins.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mizuki Ogata ◽  
Reiji Masuda ◽  
Hiroya Harino ◽  
Masayuki K. Sakata ◽  
Makoto Hatakeyama ◽  
...  

AbstractEnvironmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


2011 ◽  
Vol 12 ◽  
pp. 15-23 ◽  
Author(s):  
C. Escutia ◽  
H. Brinkhuis ◽  
A. Klaus ◽  

Integrated Ocean Drilling Program (IODP) Expedition 318, Wilkes Land Glacial History, drilled a transect of sites across the Wilkes Land margin of Antarctica to provide a long-term record of the sedimentary archives of Cenozoic Antarctic glaciation and its intimate relationships with global climatic and oceanographic change. The Wilkes Land drilling program was undertaken to constrain the age, nature, and paleoenvironment of the previously only seismically inferred glacial sequences. The expedition (January–March 2010) recovered ~2000 meters of high-quality middle Eocene–Holocene sediments from water depths between 400 m and 4000 m at four sites on the Wilkes Land rise (U1355, U1356, U1359, and U1361) and three sites on the Wilkes Land shelf (U1357, U1358, and U1360). <br><br> These records span ~53 million years of Antarctic history, and the various seismic units (WL-S4–WL-S9) have been successfully dated. The cores reveal the history of the Wilkes Land Antarctic margin from an ice-free “greenhouse” Antarctica, to the first cooling, to the onset and erosional consequences of the first glaciation and the subsequent dynamics of the waxing and waning ice sheets, all the way to thick, unprecedented "tree ring style" records with seasonal resolution of the last deglaciation that began ~10,000 y ago. The cores also reveal details of the tectonic history of the Australo-Antarctic Gulf from 53 Ma, portraying the onset of the second phase of rifting between Australia and Antarctica, to ever-subsiding margins and deepening, to the present continental and ever-widening ocean/continent configuration. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.12.02.2011" target="_blank">10.2204/iodp.sd.12.02.2011</a>


2012 ◽  
Vol 13 ◽  
pp. 28-34 ◽  
Author(s):  
D. A. H. Teagle ◽  
B. Ildefonse ◽  
P. Blum ◽  

Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. <br><br> Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. <br><br> Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.13.04.2011" target="_blank">10.2204/iodp.sd.13.04.2011</a>


2016 ◽  
Vol 2 ◽  
pp. e97 ◽  
Author(s):  
Peter T. Darch ◽  
Christine L. Borgman

BackgroundAn increasing array of scientific fields face a “data deluge.” However, in many fields data are scarce, with implications for their epistemic status and ability to command funding. Consequently, they often attempt to develop infrastructure for data production, management, curation, and circulation. A component of a knowledge infrastructure may serve one or more scientific domains. Further, a single domain may rely upon multiple infrastructures simultaneously. Studying how domains negotiate building and accessing scarce infrastructural resources that they share with other domains will shed light on how knowledge infrastructures shape science.MethodsWe conducted an eighteen-month, qualitative study of scientists studying the deep subseafloor biosphere, focusing on the Center for Dark Energy Biosphere Investigations (C-DEBI) and the Integrated Ocean Drilling Program (IODP) and its successor, the International Ocean Discovery Program (IODP2). Our methods comprised ethnographic observation, including eight months embedded in a laboratory, interviews (n = 49), and document analysis.ResultsDeep subseafloor biosphere research is an emergent domain. We identified two reasons for the domain’s concern with data scarcity: limited ability to pursue their research objectives, and the epistemic status of their research. Domain researchers adopted complementary strategies to acquire more data. One was to establish C-DEBI as an infrastructure solely for their domain. The second was to use C-DEBI as a means to gain greater access to, and reconfigure, IODP/IODP2 to their advantage. IODP/IODP2 functions as infrastructure for multiple scientific domains, which creates competition for resources. C-DEBI is building its own data management infrastructure, both to acquire more data from IODP and to make better use of data, once acquired.DiscussionTwo themes emerge. One is data scarcity, which can be understood only in relation to a domain’s objectives. To justify support for public funding, domains must demonstrate their utility to questions of societal concern or existential questions about humanity. The deep subseafloor biosphere domain aspires to address these questions in a more statistically intensive manner than is afforded by the data to which it currently has access. The second theme is the politics of knowledge infrastructures. A single scientific domain may build infrastructure for itself and negotiate access to multi-domain infrastructure simultaneously. C-DEBI infrastructure was designed both as a response to scarce IODP/IODP2 resources, and to configure the data allocation processes of IODP/IODP2 in their favor.


Sign in / Sign up

Export Citation Format

Share Document