scholarly journals Macroalgal metabolism and lateral carbon flows create extended atmospheric CO<sub>2</sub> sinks

2019 ◽  
Author(s):  
Kenta Watanabe ◽  
Goro Yoshida ◽  
Masakazu Hori ◽  
Yu Umezawa ◽  
Hirotada Moki ◽  
...  

Abstract. Macroalgal beds have drawn attention as one of the vegetated coastal ecosystems that act as atmospheric CO2 sinks. Although macroalgal metabolism as well as inorganic and organic carbon flows are important pathways for CO2 sequestration by macroalgal beds, the relationships between macroalgal metabolism and associated carbon flows are still poorly understood. In the present study, we investigated carbon flows, including air–water CO2 exchange and budgets of dissolved inorganic carbon, total alkalinity, and dissolved organic carbon (DOC) in a temperate macroalgal bed during productive months of the year. To assess the key mechanisms of CO2 sequestration by the macroalgal bed, we estimated macroalgal metabolism and lateral carbon flows using a field-bag method, a degradation experiment, and mass balance modelling over a diurnal cycle. Our results showed that macroalgal metabolism and lateral carbon flows driven by water exchange affected air–water CO2 exchange in the macroalgal bed and the surrounding waters. Macroalgal metabolism caused overlying waters to contain low concentrations of CO2 and high concentrations of DOC that were efficiently exported offshore from the macroalgal bed. The exported water lowered CO2 concentrations in the offsite surface water and enhanced atmospheric CO2 uptake. Our findings suggest that macroalgal beds in habitats associated with high water exchange rates can create extensive CO2-sinks around them.

2020 ◽  
Vol 17 (9) ◽  
pp. 2425-2440 ◽  
Author(s):  
Kenta Watanabe ◽  
Goro Yoshida ◽  
Masakazu Hori ◽  
Yu Umezawa ◽  
Hirotada Moki ◽  
...  

Abstract. Macroalgal beds have drawn attention as one of the vegetated coastal ecosystems that act as atmospheric CO2 sinks. Although macroalgal metabolism as well as inorganic and organic carbon flows are important pathways for CO2 uptake by macroalgal beds, the relationships between macroalgal metabolism and associated carbon flows are still poorly understood. In the present study, we investigated carbon flows, including air–water CO2 exchange and budgets of dissolved inorganic carbon, total alkalinity, and dissolved organic carbon (DOC), in a temperate macroalgal bed during the productive months of the year. To assess the key mechanisms responsible for atmospheric CO2 uptake by the macroalgal bed, we estimated macroalgal metabolism and lateral carbon flows (i.e., carbon exchanges between the macroalgal bed and the offshore area) by using field measurements of carbon species, a field-bag method, a degradation experiment, and mass-balance modeling in a temperate Sargassum bed over a diurnal cycle. Our results showed that macroalgal metabolism and lateral carbon flows driven by water exchange affected air–water CO2 exchange in the macroalgal bed and the surrounding waters. Macroalgal metabolism caused overlying waters to contain low concentrations of CO2 and high concentrations of DOC that were efficiently exported offshore from the macroalgal bed. These results indicate that the exported water can potentially lower CO2 concentrations in the offshore surface water and enhance atmospheric CO2 uptake. Furthermore, the Sargassum bed exported 6 %–35 % of the macroalgal net community production (NCP; 302–1378 mmol C m−2 d−1) as DOC to the offshore area. The results of degradation experiments showed that 56 %–78 % of macroalgal DOC was refractory DOC (RDOC) that persisted for 150 d; thus, the Sargassum bed exported 5 %–20 % of the macroalgal NCP as RDOC. Our findings suggest that macroalgal beds in habitats associated with high water exchange rates can create significant CO2 sinks around them and export a substantial amount of DOC to offshore areas.


2009 ◽  
Vol 6 (4) ◽  
pp. 6579-6599
Author(s):  
S. V. Smith ◽  
J.-P. Gattuso

Abstract. Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3− to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3− and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle. While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2 over time, which leads to ocean acidification, alters the relationship between organic and inorganic C reactions and carbon storage in the ocean. Thus, the carbon reactions and ψ can cause large variations in oceanic carbon storage with little exchange with the atmosphere.


2013 ◽  
Vol 10 (5) ◽  
pp. 8283-8311 ◽  
Author(s):  
M. Wakita ◽  
S. Watanabe ◽  
M. Honda ◽  
A. Nagano ◽  
K. Kimoto ◽  
...  

Abstract. Rising atmospheric CO2 contents have led to greater CO2 uptake by the oceans, lowering both pH due to increasing hydrogen ions and CaCO3 saturation states due to declining carbonate ion (CO32−). Here, we used previously compiled data sets and new data collected in 2010 and 2011 to investigate ocean acidification of the North Pacific western subarctic gyre. In winter, the western subarctic gyre is a source of CO2 to the atmosphere because of convective mixing of deep waters rich in dissolved inorganic carbon (DIC). We calculated pH in winter mixed layer from DIC and total alkalinity (TA), and found that it decreased at the rate of −0.001 ± 0.0004 yr−1 from 1997 to 2011. This decrease rate is slower than that expected under condition of seawater/atmosphere equilibration, and it is also slower than the rate in the subtropical regions (−0.002 yr−1). The slow rate is caused by a reduction of CO2 emission in winter due to an increase in TA. Below the mixed layer, the calcite saturation horizon (~185 m depth) shoaled at the rate of 2.9 ± 0.9 m yr−1 as the result of the declining CO32− concentration (−0.03 ± 0.01 μmol k−1yr−1). Between 200 m and 300 m depth, pH decline during the study period (−0.0051 ± 0.0010 yr−1) was larger than ever reported in the open North Pacific. This enhanced acidification rate below the calcite saturation horizon reflected not only the uptake of anthropogenic CO2 but also the increase in the decomposition of organic matter evaluated from the increase in AOU, which suggests that the dissolution of CaCO3 particles increased.


2015 ◽  
Vol 12 (20) ◽  
pp. 6251-6258 ◽  
Author(s):  
K. Watanabe ◽  
T. Kuwae

Abstract. Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (−40 to −10 ‰) were significantly higher than those of aquatic DIC (−46 to −18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0–40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.


2014 ◽  
Vol 11 (3) ◽  
pp. 735-747 ◽  
Author(s):  
T. L. Smallman ◽  
M. Williams ◽  
J. B. Moncrieff

Abstract. The coupled numerical weather model WRF-SPA (Weather Research and Forecasting model and Soil-Plant-Atmosphere model) has been used to investigate a 3 yr time series of observed atmospheric CO2 concentrations from a tall tower in Scotland, UK. Ecosystem-specific tracers of net CO2 uptake and net CO2 release were used to investigate the contributions to the tower signal of key land covers within its footprint, and how contributions varied at seasonal and interannual timescales. In addition, WRF-SPA simulated atmospheric CO2 concentrations were compared with two coarse global inversion models, CarbonTrackerEurope and the National Oceanic and Atmospheric Administration's CarbonTracker (CTE-CT). WRF-SPA realistically modelled both seasonal (except post harvest) and daily cycles seen in observed atmospheric CO2 at the tall tower (R2 = 0.67, rmse = 3.5 ppm, bias = 0.58 ppm). Atmospheric CO2 concentrations from the tall tower were well simulated by CTE-CT, but the inverse model showed a poorer representation of diurnal variation and simulated a larger bias from observations (up to 1.9 ppm) at seasonal timescales, compared to the forward modelling of WRF-SPA. However, we have highlighted a consistent post-harvest increase in the seasonal bias between WRF-SPA and observations. Ecosystem-specific tracers of CO2 exchange indicate that the increased bias is potentially due to the representation of agricultural processes within SPA and/or biases in land cover maps. The ecosystem-specific tracers also indicate that the majority of seasonal variation in CO2 uptake for Scotland's dominant ecosystems (forests, cropland and managed grassland) is detectable in observations within the footprint of the tall tower; however, the amount of variation explained varies between years. The between years variation in detectability of Scotland's ecosystems is potentially due to seasonal and interannual variation in the simulated prevailing wind direction. This result highlights the importance of accurately representing atmospheric transport used within atmospheric inversion models used to estimate terrestrial source/sink distribution and magnitude.


2009 ◽  
Vol 66 (7) ◽  
pp. 1538-1546 ◽  
Author(s):  
Ferial Louanchi ◽  
Meriem Boudjakdji ◽  
Lamri Nacef

Abstract Louanchi, F., Boudjakdji, M, and Nacef, L. 2009. Decadal changes in surface carbon dioxide and related variables in the Mediterranean Sea as inferred from a coupled data-diagnostic model approach. – ICES Journal of Marine Science, 66: 1538–1546. A coupled approach based on available datasets of temperature, salinity, oxygen, nutrients, and chlorophyll, and a surface layer box model previously developed and modified for the present study, allowed us to reconstruct dissolved inorganic carbon (DIC), total alkalinity, and carbon dioxide fugacity (fCO2) mixed-layer fields for the Mediterranean Sea, from the 1960s to the 1990s. The approach used in this study resulted in a 7% relative error on reconstructed surface fCO2 fields. The Mediterranean Sea transformed from a source of 0.62 Tg C year−1 for atmospheric CO2 in the 1960s, to a net sink of −1.98 Tg C year−1 in the 1990s. The annual cycle in surface fCO2 was driven mainly by temperature variations in the Mediterranean Sea, whereas its decadal variations resulted from a balance between primary production and the thermal effect. According to our model results, the atmospheric CO2 increase of ∼40 µatm over the period of our investigation induced an increase in DIC of ∼30 µmol l−1 in surface waters. A 50% reduction in the magnitude of seasonal variations in surface temperature occurred during the 1990s relative to the earlier decades. Therefore, surface fCO2 only increased by 24 µatm from the 1960s to the 1990s. Changes in pH were not significant over this period.


2008 ◽  
Vol 5 (1) ◽  
pp. 787-840 ◽  
Author(s):  
P. Joassin ◽  
B. Delille ◽  
K. Soetaert ◽  
A. V. Borges ◽  
L. Chou ◽  
...  

Abstract. A dynamic model has been developed to represent biogeochemical variables and processes observed during a bloom of Emiliania huxleyi coccolithophore. This bloom was induced in a mesocosm experiment during which the ecosystem development was followed over a period of 23-days through changes in various biogeochemical parameters such as inorganic nutrients (nitrate, ammonium and phosphate), total alkalinity (TA), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), dissolved oxygen (O2), photosynthetic pigments, particulate organic carbon (POC), dissolved organic carbon (DOC), Transparent Exopolymer Particles (TEP), primary production, and calcification. This dynamic model is based on unbalanced algal growth and balanced bacterial growth. In order to adequately reproduce the observations, the model includes an explicit description of phosphorus cycling, calcification, TEP production and an enhanced mortality due to viral lysis. The model represented carbon, nitrogen and phosphorus fluxes observed in the mesocosms. Modelled profiles of algal biomass and final concentrations of DIC and nutrients are in agreement with the experimental observations.


2020 ◽  
Author(s):  
Chantal Mears ◽  
Helmuth Thomas ◽  
Paul B. Henderson ◽  
Matthew A. Charette ◽  
Hugh MacIntyre ◽  
...  

Abstract. As a shelf dominated basin, the Arctic Ocean and its biogeochemistry are heavily influenced by continental and riverine sources. Radium isotopes (226Ra, 228Ra, 224Ra, 223Ra), are transferred from the sediments to seawater, making them ideal tracers of sediment-water exchange processes and ocean mixing. 226Ra and 228Ra are the two longer-lived isotopes of the Radium Quartet (226Ra, t1/2 = 1600 y and 228Ra, t1/2 = 5.8 y). Because of their long half-lives they can provide insight into the water mass compositions, distribution patterns, as well as mixing processes and the associated timescales throughout the Canadian Arctic Archipelago (CAA). The wide range of 226Ra, 228Ra, and of the 228Ra / 226Ra ratio, measured in water samples collected during the 2015 GEOTRACES cruise, complemented by additional chemical tracers (dissolved inorganic carbon (DIC), total alkalinity (AT), barium (Ba), and the stable oxygen isotope composition of water (δ18O)) highlight the dominant biogeochemical, hydrographic and bathymetric features of the CAA. Bathymetric features, such as the continental shelf and shallow coastal sills, are critical in modulating circulation patterns within the CAA, including the bulk flow of Pacific waters and the inhibited eastward flow of denser Atlantic waters through the CAA. Using a Principal Component Analysis, we unravel the dominant mechanisms and the apparent water mass end-members that shape the tracer distributions. We identify two distinct water masses located above and below the upper halocline layer throughout the CAA, as well as distinctly differentiate surface waters in the eastern and western CAA. Furthermore, we identify water exchange across 80° W, inferring a draw of Atlantic water, originating from Baffin Bay, into the CAA. In other words, this implies the presence of an Atlantic water U-turn located at Barrow Strait, where the same water mass is seen along the northernmost edge at 80° W as well as along south-easternmost confines of Lancaster Sound. Overall, this study provides a stepping stone for future research initiatives within the Canadian Arctic Archipelago, revealing how quantifying disparities in radioactive isotopes can provide valuable information on the potential effects of climate change within vulnerable areas such as the CAA.


2020 ◽  
Vol 26 (4) ◽  
pp. 375-399
Author(s):  
Theodor Kindeberg ◽  
Nicholas R. Bates ◽  
Travis A. Courtney ◽  
Tyler Cyronak ◽  
Alyssa Griffin ◽  
...  

Abstract Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 77-89 ◽  
Author(s):  
A. M. Omar ◽  
A. Olsen ◽  
T. Johannessen ◽  
M. Hoppema ◽  
H. Thomas ◽  
...  

Abstract. Data from two Voluntary Observing Ship (VOS) (2005–2007) augmented with data subsets from ten cruises (1987–2005) were used to investigate the spatiotemporal variations of the CO2 fugacity in seawater (fCO2sw) in the North Sea at seasonal and inter-annual time scales. The observed seasonal fCO2sw variations were related to variations in sea surface temperature (SST), biology plus mixing, and air-sea CO2 exchange. Over the study period, the seasonal amplitude in fCO2sw induced by SST changes was 0.4–0.75 times those resulting from variations in biology plus mixing. Along a meridional transect, fCO2sw normally decreased northwards (−12 μatm per degree latitude), but the gradient disappeared/reversed during spring as a consequence of an enhanced seasonal amplitude of fCO2sw in southern parts of the North Sea. Along a zonal transect, a weak gradient (−0.8 μatm per degree longitude) was observed in the annual mean fCO2sw. Annually and averaged over the study area, surface waters of the North Sea were CO2 undersaturated and, thus, a sink of atmospheric CO2. However, during summer, surface waters in the region 55.5–54.5° N were CO2 supersaturated and, hence, a source for atmospheric CO2. Comparison of fCO2sw data acquired within two 1°×1° regions in the northern and southern North Sea during different years (1987, 2001, 2002, and 2005–2007) revealed large interannual variations, especially during spring and summer when year-to-year fCO2sw differences (≈160–200 μatm) approached seasonal changes (≈200–250 μatm). The springtime variations resulted from changes in magnitude and timing of the phytoplankton bloom, whereas changes in SST, wind speed and total alkalinity may have contributed to the summertime interannual fCO2sw differences. The lowest interannual variation (10–50 μatm) was observed during fall and early winter. Comparison with data reported in October 1967 suggests that the fCO2sw growth rate in the central North Sea was similar to that in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document