scholarly journals A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests

2020 ◽  
Author(s):  
Kamel Soudani ◽  
Nicolas Delpierre ◽  
Daniel Berveiller ◽  
Gabriel Hmimina ◽  
Jean-Yves Pontailler ◽  
...  

Abstract. Tree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet tree phenology has historically not been recorded at flux measurement sites. Here, we used seasonal time-series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, LAI (Leaf Area Index), fAPAR (fraction of Absorbed Photosynthetic Active Radiation), CC (Canopy Closure), fRvis (fraction of Reflected Radiation) and GPP (Gross Primary Productivity) to predict six phenological markers detecting the start, middle and end of budburst and of leaf senescence in a temperate deciduous forest. We compared them to observations of budburst and leaf senescence achieved by field phenologists over a 13-year period. GCC, NDVI and CC captured very well the interannual variability of spring phenology (R2 > 0.80) and provided the best estimates of the observed budburst dates, with a mean absolute deviation (MAD) less than 4 days. For the CC and GCC methods, mid-amplitude (50 %) threshold dates during spring phenological transition agreed well with the observed phenological dates. For the NDVI-based method, on average, the mean observed date coincides with the date when NDVI reaches 25 % of its amplitude of annual variation. For the other methods, MAD ranges from 6 to 17 days. GPP provides the most biased estimates. During the leaf senescence stage, NDVI- and CC-derived dates correlated significantly with observed dates (R2 = 0.63 and 0.80 for NDVI and CC, respectively), with MAD less than 7 days. Our results show that proximal sensing methods can be used to derive robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.

2020 ◽  
Author(s):  
Kamel Soudani ◽  
Nicolas Delpierre ◽  
Daniel Berveiller ◽  
Gabriel Hmimina ◽  
Jean-Yves Pontailler ◽  
...  

AbstractTree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet tree phenology has historically not been recorded at flux measurement sites. Here, we used seasonal time-series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, LAI (Leaf Area Index), fAPAR (fraction of Absorbed Photosynthetic Active Radiation), CC (Canopy Closure), fRvis (fraction of Reflected Radiation) and GPP (Gross Primary Productivity) to predict six phenological markers detecting the start, middle and end of budburst and of leaf senescence in a temperate deciduous forest. We compared them to observations of budburst and leaf senescence achieved by field phenologists over a 13-year period. GCC, NDVI and CC captured very well the interannual variability of spring phenology (R2 > 0.80) and provided the best estimates of the observed budburst dates, with a mean absolute deviation (MAD) less than 4 days. For the CC and GCC methods, mid-amplitude (50%) threshold dates during spring phenological transition agreed well with the observed phenological dates. For the NDVI-based method, on average, the mean observed date coincides with the date when NDVI reaches 25% of its amplitude of annual variation. For the other methods, MAD ranges from 6 to 17 days. GPP provides the most biased estimates. During the leaf senescence stage, NDVI- and CC-derived dates correlated significantly with observed dates (R2 =0.63 and 0.80 for NDVI and CC, respectively), with MAD less than 7 days. Our results show that proximal sensing methods can be used to derive robust phenological indexes. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and decadal trends of mass and energy exchanges.HighlightsWe used 8 indirect methods to predict the timing of phenological events.GCC, NDVI and CC captured very well the interannual variation of spring phenology.GCC, NDVI and CC provided the best estimates of observed budburst dates.NDVI and CC derived-dates correlated with observed leaf senescence dates.


2021 ◽  
Vol 18 (11) ◽  
pp. 3391-3408
Author(s):  
Kamel Soudani ◽  
Nicolas Delpierre ◽  
Daniel Berveiller ◽  
Gabriel Hmimina ◽  
Jean-Yves Pontailler ◽  
...  

Abstract. Tree phenology is a major driver of forest–atmosphere mass and energy exchanges. Yet, tree phenology has rarely been monitored in a consistent way throughout the life of a flux-tower site. Here, we used seasonal time series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (greenness chromatic coordinate), broadband NDVI, LAI (leaf area index), fAPAR (fraction of absorbed photosynthetic active radiation), CC (canopy closure), fRvis (fraction of reflected radiation) and GPP (gross primary productivity) to predict six phenological markers detecting the start, middle and end of budburst and of leaf senescence in a temperate deciduous forest using an asymmetric double sigmoid function (ADS) fitted to the time series. We compared them to observations of budburst and leaf senescence achieved by field phenologists over a 13-year period. GCC, NDVI and CC captured the interannual variability of spring phenology very well (R2>0.80) and provided the best estimates of the observed budburst dates, with a mean absolute deviation (MAD) of less than 4 d. For the CC and GCC methods, mid-amplitude (50 %) threshold dates during spring phenological transition agreed well with the observed phenological dates. For the NDVI-based method, on average, the mean observed date coincides with the date when NDVI reaches 25 % of its amplitude of annual variation. For the other methods, MAD ranges from 6 to 17 d. The ADS method used to derive the phenological markers provides the most biased estimates for the GPP and GCC. During the leaf senescence stage, NDVI- and CC-derived dates correlated significantly with observed dates (R2=0.63 and 0.80 for NDVI and CC, respectively), with an MAD of less than 7 d. Our results show that proximal-sensing methods can be used to derive robust phenological metrics. They can be used to retrieve long-term phenological series at eddy covariance (EC) flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.


Author(s):  
Dipanwita Haldar ◽  
Rojalin Tripathy ◽  
Viral Dave ◽  
Rucha Dave ◽  
Bimal Bhattacharya ◽  
...  

Morphological parameters like cotton height, branches, Leaf Area Index and biomass are mainly affected by the vegetation water content (VWC). Periodical assessment of the VWC and crop parameters is required for timely management of the crop for maximizing yield. The study aimed at using both optical and microwave remotely sensed data to assess cotton crop condition based on the above mentioned traits. Vegetation indices (VI) derived from ground based measurements (5 narrow band and 2 broad band VIs) as well as satellite derived reflectance (2 broad band VIs) were assessed. Regression models were derived for estimating LAI, biomass and plant water content using the ground based indices and applied to the satellite derived spectral index (from LISS-III) map to estimate the respective parameters. HH and HV polarization from RISAT-1 were used to derive Radar Vegetation Index (RVI). The coefficient of determination of the model for estimating LAI, biomass and vegetation water content of cotton with optical vegetation index as input parameter were found to be 0.42, 0.51 and 0.52, respectively. The correlation between RVI and plant height, date of planting in terms of the age of the crop and vegetation water content were found to range between 0.4 to 0.6. The fresh biomass from RVI showed spatial variability from 100 gm-2 to 4000 gm-2 while the dry biomass map derived from NDVI showed spatial variability of 50 to 950 g m-2 for the study area. Plant water content in the district varied from 65 to 85%. The correlation between optical vegetation index and RVI was not significant. Hence a multiple linear regression model using both optical index (NDVI and LSWI) and SAR index (RVI) was developed to assess the LAI, biomass and plant water content. The model showed a R2 of 0.5 for LAI estimation but not significant for biomass and water content. This study show cased the use of combined optical and microwave (C band) remote sensing for cotton condition assessment.


2021 ◽  
Vol 13 (3) ◽  
pp. 401
Author(s):  
Cadan Cummings ◽  
Yuxin Miao ◽  
Gabriel Dias Paiao ◽  
Shujiang Kang ◽  
Fabián G. Fernández

Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy sensors (ACS) with two or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays L.) N status across different soil drainage and tillage systems under variable N supply conditions. The four plant metrics used to approximate in-season N status consist of aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with a split-split plot design replicated four times with soil drainage (drained and undrained) as main block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in 45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive whole plant samples were collected at V8 +/−1 growth stage. Proximal sensor metrics were used to construct regression models to estimate N status indicators using simple regression (SR) and eXtreme Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air temperature difference (ΔTemp). Management practices such as drainage, tillage, and PPN rate were also included to determine the potential improvement in corn N status diagnosis. Three of the four replicated drained and undrained blocks were randomly selected as training data, and the remaining drained and undrained blocks were used as testing data. The results indicated that SR modeling using NDVI would be sufficient for estimating AGB compared to more complex machine learning methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple inputs. Among different approaches of XGB modeling, combining management information and Crop Circle Phenom measurements together increased model performance for predicting each of the four plant N metrics compared with solely using sensing data. The PPN rate was the most important management metric for all models compared to drainage and tillage information. Combining Crop Circle Phenom sensor parameters and management information is a promising strategy for in-season diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing system under diverse on-farm conditions and to test other machine learning models.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


2021 ◽  
Vol 13 (4) ◽  
pp. 719
Author(s):  
Xiuxia Li ◽  
Shunlin Liang ◽  
Huaan Jin

Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.


2021 ◽  
Vol 10 (3) ◽  
pp. 193
Author(s):  
Zhaoqi Wang ◽  
Xiang Liu ◽  
Hao Wang ◽  
Kai Zheng ◽  
Honglin Li ◽  
...  

The Three-River Source Region (TRSR) is vital to the ecological security of China. However, the impact of global warming on the dynamics of vegetation along the elevation gradient in the TRSR remains unclear. Accordingly, we used multi-source remote sensing vegetation indices (VIs) (GIMMS (Global Inventory Modeling and Mapping Studies) LAI (Leaf Area Index), GIMMS NDVI (Normalized Difference Vegetation Index), GLOBMAP (Global Mapping) LAI, MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index), MODIS NDVI, and MODIS NIRv (near-infrared reflectance of vegetation)) and digital elevation model data to study the changes of VGEG (Vegetation Greenness along the Elevation Gradient) in the TRSR from 2001 to 2016. Results showed that the areas with a positive correlation of vegetation greenness and elevation accounted for 36.34 ± 5.82% of the study areas. The interannual variations of VGEG showed that the significantly changed regions were mainly observed in the elevation gradient of 4–5 km. The VGEG was strongest in the elevation gradient of 4–5 km and weakest in the elevation gradient of >5 km. Correlation analysis showed that the mean annual temperature was positively correlated with VIs, and the effect of the mean annual precipitation on VIs was more obvious at low altitude than in high altitude. This study contributes to our understanding of the VGEG variation in the TRSR under global climate variation and also helps in the prediction of future carbon cycle patterns.


Sign in / Sign up

Export Citation Format

Share Document