scholarly journals A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – Records of seasonal water temperature variability

2021 ◽  
Author(s):  
Inga Labuhn ◽  
Franziska Tell ◽  
Ulrich von Grafenstein ◽  
Dan Hammarlund ◽  
Henning Kuhnert ◽  
...  

Abstract. Carbonate shells and encrustations from lacustrine organisms provide proxy records of past environmental and climatic changes. The carbon isotopic composition (δ13C) of such carbonates depends on the δ13C of dissolved inorganic carbon (DIC). Their oxygen isotopic composition (δ18O) is controlled by the δ18O of the lake water and on water temperature during carbonate precipitation. Lake water δ18O, in turn, reflects the δ18O of precipitation in the catchment, water residence time and mixing, and evaporation. A paleoclimate interpretation of carbonate isotope records requires a site-specific calibration based on an understanding of these local conditions. For this study, samples of different carbonate components and water were collected in the littoral zone of Lake Locknesjön, central Sweden (62.99° N, 14.85° E, 328 m a.s.l.) along a water depth gradient from 1 to 8 m. Samples from living organisms and sub-recent samples in surface sediments were taken from the calcifying alga Chara hispida, mollusks from the genus Pisidium, and adult and juvenile instars of two ostracod species, Candona candida and Candona neglecta. Neither the isotopic composition of carbonates nor the δ18O of water vary significantly with water depth, indicating a well-mixed epilimnion. The mean δ13C of Chara hispida encrustations is 4 ‰ higher than the other carbonates. This is due to fractionation related to photosynthesis, which preferentially incorporates 12C in the organic matter and increases the δ13C of the encrustations. A small effect of photosynthetic 13C enrichment in DIC is seen in contemporaneously formed valves of juvenile ostracods. The largest differences in the mean carbonate δ18O between species are caused by vital offsets, i.e. the species-specific deviations from the δ18O of inorganic carbonate which would have been precipitated in isotopic equilibrium with the water. After subtraction of these offsets, the remaining differences in the mean carbonate δ18O between species can mainly be attributed to seasonal water temperature changes. The lowest δ18O values are observed in Chara hispida encrustations, which form during the summer months when photosynthesis is most intense. Adult ostracods, which calcify their valves during the cold season, display the highest δ18O values. This is because an increase in water temperature leads to a decrease in fractionation between carbonate and water, and therefore to a decrease in carbonate δ18O. At the same time, an increase in air temperature leads to an increase in the δ18O of lake water through its effect on precipitation δ18O and on evaporation from the lake, and consequently to an increase in carbonate δ18O, opposite to the effect of increasing water temperature on oxygen-isotope fractionation. However, the seasonal and inter-annual variability in lake water δ18O is small (~0.5 ‰) due to the long water residence time of the lake. Seasonal changes in the temperature-dependent fractionation are therefore the dominant cause of carbonate δ18O differences between species when vital offsets are corrected. Temperature reconstructions based on paleotemperature equations for equilibrium carbonate precipitation using the mean δ18O of each species and the mean δ18O of lake water are well in agreement with the observed seasonal water temperature range. The high carbonate δ18O variability of samples within a species, on the other hand, leads to a large scatter in the reconstructed temperatures based on individual samples. This implies that care must be taken to obtain a representative sample size for paleotemperature reconstructions.

2021 ◽  
Author(s):  
Inga Labuhn ◽  
Franziska Tell ◽  
Ulrich von Grafenstein ◽  
Dan Hammarlund ◽  
Henning Kuhnert ◽  
...  

<p>Carbonate shells and encrustations from lacustrine organisms provide proxy records of past environmental and climatic changes. The oxygen isotopic composition (δ<sup>18</sup>O) of such carbonates depends on water temperature during carbonate precipitation, and on the δ<sup>18</sup>O of the lake water. Lake water δ<sup>18</sup>O, in turn, is controlled by the δ<sup>18</sup>O of precipitation in the catchment, water residence time and mixing, and by evaporation. A paleoclimate interpretation of carbonate δ<sup>18</sup>O records requires a site-specific calibration based on an understanding of the local conditions.</p><p>For this study, carbonates and water were sampled in the littoral zone of lake Locknesjön, central Sweden (62.99°N, 14.85°E, 328 m a.s.l.) along a water depth gradient from 1 to 8 m. We took samples from living organisms and sub-recent samples in surface sediments of the calcifying algae <em>Chara hispida</em>, the mollusk <em>Pisidium</em>, and adult and juvenile instars of two ostracod species, <em>Candona candida</em> and <em>Candona neglecta</em>.</p><p>We show that neither the δ<sup>18</sup>O of carbonates nor the δ<sup>18</sup>O of water vary significantly with water depth, indicating a well-mixed epilimnion. The largest differences in the mean carbonate δ<sup>18</sup>O between species are caused by vital offsets, i.e. the species-specific deviation from the δ<sup>18</sup>O of inorganic carbonate which would have been precipitated in isotopic equilibrium with the water. After subtraction of these constant vital offsets, remaining differences in the mean carbonate δ<sup>18</sup>O between species can mainly be attributed to seasonal water temperature changes. The lowest δ<sup>18</sup>O values are observed in <em>C</em><em>h</em><em>ara</em> encrustations, which form during the summer months when photosynthesis is most intense. Adult ostracods, which calcify their valves during the cold season, display the highest δ<sup>18</sup>O values. This is because an increase in temperature leads to a decrease in fractionation between carbonate and water, and therefore to a decrease in carbonate δ<sup>18</sup>O. An increase in temperature also leads to an increase in the δ<sup>18</sup>O of lake water through its effect on precipitation δ<sup>18</sup>O and on evaporation, and consequently to an increase in carbonate δ<sup>18</sup>O, opposite to the temperature effect on fractionation. However, the seasonal and inter-annual variability in lake water δ<sup>18</sup>O is small (0.5‰) due to the long water residence time. Seasonal changes in the temperature-dependent fractionation are therefore the dominant cause of carbonate δ<sup>18</sup>O differences between species.</p><p>Temperature reconstructions based on “paleo-temperature” equations for equilibrium carbonate precipitation using the mean δ<sup>18</sup>O of each species and the mean δ<sup>18</sup>O of lake water are well in agreement with the observed seasonal water temperature range. The high carbonate δ<sup>18</sup>O variability of samples within a species, on the other hand, leads to a large scatter in the reconstructed temperatures based on individual samples. This implies that care must be taken to obtain a representative sample size for paleo-temperature reconstructions.</p>


2016 ◽  
Author(s):  
Shuh-Ji Kao ◽  
Tzu-Ling Chiang ◽  
Da-Wei Li ◽  
Yi-Chia Hsin ◽  
Li-Wei Zheng ◽  
...  

Abstract. Degree of oxygenation in intermediate water modulates the downward transferring efficiency of primary productivity (PP) from surface water to deep water for carbon sequestration, consequently, the storage of nutrients versus the delivery and sedimentary burial fluxes of organic matter and associated biomarkers. To better decipher the PP history of the South China Sea (SCS), appreciation about the glacial-interglacial variation of the Luzon Strait (LS) throughflow, which determines the mean residence time and oxygenation of water mass in the SCS interior, is required. Based on a well-established physical model, we conducted a 3-D modeling exercise to quantify the effects of sea level drop and monsoon wind intensity on glacial circulation pattern, thus, to evaluate effects of productivity and circulation-induced oxygenation on the burial of organic matter. Under modern climatology wind conditions, a 135 m sea level drop results in a greater basin closeness and a ~ 23 % of reduction in the LS intermediate westward throughflow, consequently, an increase in the mean water residence time (from 19 to 23 year). However, when the wind intensity was doubled during glacial low, the throughflow restored largely to reach a similar residence time (18.4 years) as today regardless its closeness. Comparing with present day SCS, surface circulation pattern in glacial model exhibits (1) stronger upwellings at the west off Luzon Island and the east off Vietnam, and (2) an intensified southwestward jet current along the western boundary of the SCS basin. Superimposed hypothetically by stronger monsoon wind, the glacial SCS conditions facilitate greater primary productivity. Manganese, a redox sensitive indicator, in IMAGES core MD972142 at southeastern SCS revealed a relatively reducing environment in glacial periods. Considering the similarity in the mean water residence time between modern and glacial cases, the reducing environment of the glacial southeastern SCS was thus ascribed to a productivity-induced rather than ventilation-induced consequence.


1987 ◽  
Vol 65 (5) ◽  
pp. 1253-1256 ◽  
Author(s):  
Frederick J. Wrona ◽  
L. R. Linton ◽  
Ronald W. Davies

Cocoon production and hatchling growth of two species of Erpobdellidae (Nephelopsis obscura and Erpobdella punctata) were compared at different water temperatures (5–20 °C). Based on the mean number of cocoons produced per individual, mean numbers of eggs per cocoon, cocoon hatching success, and hatchling growth rates, E. punctata has an ecological advantage over N. obscura at 5 and 10 °C. At 15 and 20 °C, neither species displayed a clear advantage over the other in relation to production or growth of offspring. It is suggested that the observed interspecific differences may at least in part explain the numerical dominance of E. punctata in colder lotic ecosystems.


1993 ◽  
Vol 69 (01) ◽  
pp. 035-040 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryFour thromboplastin reagents were tested by 18 laboratories in Europe, North-America, and Australasia, according to a detailed protocol. One thromboplastin was the International Reference Preparation for ox brain thromboplastin combined with adsorbed bovine plasma (coded OBT/79), and the second was a certified reference material for rabbit brain thromboplastin, plain (coded CRM 149R). The other two thromboplastin reagents were another rabbit plain brain thromboplastin (RP) with a lower ISI than CRM 149R and a rabbit brain thromboplastin combined with adsorbed bovine plasma (RC). Calibration of the latter two reagents was performed according to methods recommended by the World Health Organization (W. H. O.).The purpose of this study was to answer the following questions: 1) Is the calibration of the RC reagent more precise against the bovine/combined (OBT/79) than against the rabbit/plain reagent (CRM 149R)? 2) Is the precision of calibration influenced by the magnitude of the International Sensitivity Index (ISI)?The lowest inter-laboratory variation of ISI was observed in the calibration of the rabbit/plain reagent (RP) against the other rabbit/plain reagent (CRM 149R) (CV 1.6%). The highest interlaboratory variation was obtained in the calibration of rabbit/plain (RP) against bovine/combined (OBT/79) (CV 5.1%). In the calibration of the rabbit/combined (RC) reagent, there was no difference in precision between OBT/79 (CV 4.3%) and CRM 149R (CV 4.2%). Furthermore, there was no significant difference in the precision of the ISI of RC obtained with CRM 149R (ISI = 1.343) and the rabbit/plain (RP) reagent with ISI = 1.14. In conclusion, the calibration of RC could be performed with similar precision with either OBT/79 or CRM 149R, or RP.The mean ISI values calculated with OBT/79 and CRM 149R were practically identical, indicating that there is no bias in the ISI of these reference preparations and that these reference preparations have been stable since their original calibration studies in 1979 and 1987, respectively.International Normalized Ratio (INR) equivalents were calculated for a lyophilized control plasma derived from patients treated with oral anticoagulants. There were small but significant differences in the mean INR equivalents between the bovine and rabbit thromboplastins. There were no differences in the interlaboratory variation of the INR equivalents, when the four thromboplastins were compared.


1979 ◽  
Vol 42 (04) ◽  
pp. 1073-1114 ◽  

SummaryIn collaborative experiments in 199 laboratories, nine commercial thromboplastins, four thromboplastins held by the National Institute for Biological Standards and Control (NIBS & C), London and the British Comparative Thromboplastin were tested on fresh normal and coumarin plasmas, and on three series of freeze-dried plasmas. One of these was made from coumarin plasmas and the other two were prepared from normal plasmas; in each series, one plasma was normal and the other two represented different degrees of coumarin defect.Each thromboplastin was calibrated against NIBS&C rabbit brain 70/178, from the slope of the line joining the origin to the point of intersection of the mean ratios of coumarin/normal prothrombin times when the ratios obtained with the two thromboplastins on the same fresh plasmas were plotted against each other. From previous evidence, the slopes were calculated which would have been obtained against the NIBS&C “research standard” thromboplastin 67/40, and termed the “calibration constant” of each thromboplastin. Values obtained from the freeze-dried coumarin plasmas gave generally similar results to those from fresh plasmas for all thromboplastins, whereas values from the artificial plasmas agreed with those from fresh plasmas only when similar thromboplastins were being compared.Taking into account the slopes of the calibration lines and the variation between laboratories, precision in obtaining a patient’s prothrombin time was similar for all thromboplastins.


1985 ◽  
Vol 54 (04) ◽  
pp. 739-743 ◽  
Author(s):  
Federica Delaini ◽  
Elisabetta Dejana ◽  
Ine Reyers ◽  
Elisa Vicenzi ◽  
Germana De Bellis Vitti ◽  
...  

SummaryWe have investigated the relevance of some laboratory tests of platelet function in predicting conditions of thrombotic tendency. For this purpose, we studied platelet survival, platelet aggregation in response to different stimuli, TxB2 and 6-keto-PGFlα production in serum of rats bearing a nephrotic syndrome induced by adriamycin. These animals show a heavy predisposition to the development of both arterial and venous thrombosis. The mean survival time was normal in nephrotic rats in comparison to controls. As to aggregation tests, a lower aggregating response was found in ADR-treated rats using ADP or collagen as stimulating agents. With arachidonic acid (AA) we observed similar aggregating responses at lower A A concentrations, whereas at higher AA concentrations a significantly lower response was found in nephrotic rats, despite their higher TxB2 production. Also TxB2 and 6-keto-PGFlα levels in serum of nephrotic rats were significantly higher than in controls. No consistent differences were found in PGI2-activity generated by vessels of control or nephrotic rats.These data show that platelet function may appear normal or even impaired in rats with a markedly increased thrombotic tendency. On the other hand, the significance of high TxB2 levels in connection with mechanisms leading to thrombus formation remains a controversial issue.


2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


2004 ◽  
Vol 9 (3) ◽  
pp. 233-240 ◽  
Author(s):  
S. Kim

This paper describes a Voronoi analysis method to analyze a soccer game. It is important for us to know the quantitative assessment of contribution done by a player or a team in the game as an individual or collective behavior. The mean numbers of vertices are reported to be 5–6, which is a little less than those of a perfect random system. Voronoi polygons areas can be used in evaluating the dominance of a team over the other. By introducing an excess Voronoi area, we can draw some fruitful results to appraise a player or a team rather quantitatively.


Sign in / Sign up

Export Citation Format

Share Document