scholarly journals A~simple model for predicting the global distribution of the N<sub>2</sub> fixing host genus <i>Alnus Mill.</i>: impact of climate change on the global distribution in 2100

2013 ◽  
Vol 10 (8) ◽  
pp. 13049-13095 ◽  
Author(s):  
A. Sakalli

Abstract. The importance of N2-fixing plants has increased in last decades. Alnus (alder) is an important plant group because of its nitrogen fixation ability. Alders are generally distributed in humid locations of boreal, temperate and tropical climate zones, where the nitrogen fixation is an important nitrogen source for other plants. To model the nitrogen fixation by alder, data about the global distribution of alder is absolutely required. In this study a new method and model to predict the distribution of N2-fixing genus on global scale is presented. Three linear functions were defined for the determination of climate area of alder locations. The distribution model was improved with the aid of the soil units from FAO-Unesco Soil Database, and vegetation types from Schmithüsen's biogeographical atlas. The model (Alnus-Distribution-Model, ADM) was also developed to predict the impact of climate change on alder distribution by using climate data of five relevant climate models (PCM, ECHam4, HadCM3, CSIRO2 and CGCM2), and four IPCC climate scenarios (i.e. A1FI, A2, B1 and B2) in 2100. The model covered basic approaches to understand the climate change effect on plant migration in the future.

Author(s):  
Kizito Musundi Kwena ◽  
G.N. Karuku ◽  
F.O. Ayuke ◽  
A.O. Esilaba

The objective of this study was to assess the impact of climate change on intercrops of maize and improved pigeonpea varieties developed. Future climate data for Katumani were downscaled from the National Meteorological Research Centre (CNRM) and Commonwealth Scientific and Industrial Research Organization (CSIRO) climate models using the Statistical Downscaling Model (SDSM) version 4.2. Both models predicted that Katumani will be warmer by 2°C and wetter by 11% by 2100. Agricultural Production Systems Simulator (APSIM) model version 7.3 was used to assess the impact of both increase in temperature and rainfall on maize and pigeonpea yield in Katumani. Maize crop will increase by 141–-150% and 10–-23 % in 2050 and 2100, respectively. Intercropping maize with pigeonpea will give mixed maize yield results. Pigeonpea yields will decline by 10–20 and 4–9% by 2100 under CSIRO and CNRM models, respectively. Intercropping short and medium duration pigeonpea varieties with maize will reduce pigeonpea yields by 60–80 and 70–90% under the CSIRO and CNRM model, respectively. There is a need to develop heat and waterlogging-tolerant pigeonpea varieties to help farmers adapt to climate change and to protect the huge pigeonpea export market currently enjoyed by Kenya.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2015 ◽  
Vol 12 (1) ◽  
pp. 815-864
Author(s):  
A. Sakalli

Abstract. Plant migration is a well known adaptation strategy of plant groups or species with evidence from historical to present observation and monitoring studies. Importance of N2-fixing plants has increased in last decades. Alnus (alder) is an important plant group because of its nitrogen fixation ability. Alders are generally distributed in humid locations of boreal, temperate and tropical climate zones, where the nitrogen fixation is an important nitrogen source for other plants. To model the nitrogen fixation by alder, data about the global distribution of alder is absolutely required. In this study a new method and model are presented to predict the distribution of N2-fixing genus on global scale and its migration in the future by using climate change scenarios. Three linear functions were defined for the determination of climate niche of alders. The distribution and migration model (Alnus-Distribution-Model (ADM)) was improved with the aid of the soil units from FAO-Unesco Soil Database, and vegetation types from Schmithüsen's biogeographical atlas. The model was also developed to predict the impact of climate change on alder distribution by using climate data from experiments performed by the Community Climate System Model version 4 (CCSM4) including the representative concentration pathways (RCPs) mitigation scenarios, and extensions of the scenarios beyond 2100 to 2300. The model covered basic approaches to understand the combine effect of climate, soil and vegetation on plant distribution and migration in the current time and future.


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12001
Author(s):  
Jinbo Fu ◽  
Linlin Zhao ◽  
Changdong Liu ◽  
Bin Sun

As IUCN critically vulnerable species,the Indo-Pacific humpback dolphins (Sousa chinensis) have attracted great public attention in recent years. The threats of human disturbance and environmental pollution to this population have been documented extensively. However, research on the sensitivity of this species to climate change is lacking. To understand the effect of climate change on the potential distribution of Sousa chinensis, we developed a weighted ensemble model based on 82 occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness, and current velocity). According to the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC), our ensemble model presented higher prediction precision than most of the single-algorithm models. It also indicated that ocean depth and distance to shore were the most important predictors in shaping the distribution patterns. The projections for the 2050s and 2100s from our ensemble model indicated a severe adverse impact of climate change on the Sousa chinensis habitat. Over 75% and 80% of the suitable habitat in the present day will be lost in all representative concentration pathway emission scenarios (RCPS) in the 2050s and 2100s, respectively. With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, strict management regulations and conservation plans are urgent to safeguard the current suitable habitats. Due to habitat contraction and poleward shift in the future, adaptive management strategies, including designing new reserves and adjusting the location and range of reserves according to the geographical distribution of Sousa chinensis, should be formulated to minimize the impacts of climate change on this species.


2021 ◽  
Vol 883 (1) ◽  
pp. 012079
Author(s):  
J M Matinahoru

Abstract This research was aimed to determine the impact of climate change on the resin productivity of dammar tree. This research will be useful as data and information for farmers and government to maintain the resin of dammar tree to be optimal and sustainable in production. This research was conducted in Inamosol Sub-district, West Seram District, Maluku Indonesia, during September-October 2020. Village and farmer samples were determined by purposive sampling technique. The selected villages were Honitetu, Hukuanakota and Rambatu. Furthermore, from each village, It was ten farmers to select for interviews and filling the questionnaire. The results showed that the average resin production of farmers in 2019 was 904.2 kg/farmer, while in 2020 was 523.7 kg/farmer. This means that it occurred a decline in resin production in 2020 about 42.08 % for each farmer—the leading cause of the decreased production as climate change factors, namely rainfall, temperature and humidity. Based on climate data of West Seram District in 2019 indicated that rainfall has occurred during six months with an average temperature of 27 °C and relative humidity of 82 %. Meanwhile, in 2020 the rainfall occurs for nine months with an average temperature of 26.5 °C, and relative humidity of 85 %.


2021 ◽  
Author(s):  
Gustavo Cárdenas-Castillero ◽  
Michal Kuráž

&lt;p&gt;Groundwater represents 98% of the world's freshwater resource. This resource is strongly impacted by the increase in temperature and variation in precipitation. Therefore, the relationship between climate change and the dynamics of aquifer recharge is still poorly understood. It was not until the 1980s when investigations in this field were improved. This research aims to evaluate the studies carried out on the impact of climate change-related to the recharge of aquifers. The applied methodology is strictly based on the bibliographic review. Bibliographic references were selected from citation database Scopus. This database was studied from a quantitative analysis using the Bibliometric package in RStudio. This investigation evaluates growth performance research on aquifer recharge on climate change from the 1980s to 2020.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The results show an average growth of 14.38% and a significant increase in research from 2009. This study identifies 52 countries, just over 26% of total countries; the highest contribution has been made by Australia, the United States and Spain. The journals with the most increased contributions are Water Journal, Journal of Hydrology, Water Resources Research, Science of the Total Environment, and Hydrology and Earth System Sciences. According to the impact of climate change, the worst projections related to the decrease in recharge were identified in arid and desert areas. While the highest recharges were placed in the northern regions and at high altitudes where the recharge capacity is maintained or increases due to rapid thaw and increasing rain. More studies should be extended to analyse groundwater assessment in other latitudes to achieve a complete and comprehensive understanding. This understanding should be one of the priorities of water and governments' scientific society to safeguard this precious resource.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words: &lt;/strong&gt;Climate change, aquifer recharge, climate models, precipitation, and temperature.&lt;/p&gt;


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amanda Oliver

Purpose This study aims to identify Canadian archives that are at risk for climate change threats, to present a snapshot of current practices around disaster planning, sustainability and climate adaptation and to provide recommended next steps for records managers and archivists adapting to climate change. Design/methodology/approach These objectives were achieved by analyzing the geographic locations of Canadian archives in relation to projected climate data and by analyzing the results of a survey distributed to staff at Canadian archival repositories. Findings This study found that all Canadian archives will be impacted by projected changes in both annual mean temperatures and precipitation to the year 2080. Themes that emerged surrounding climate adaptation strategies include the investment in the design and efficiency of spaces housing records and the importance of resilient buildings, the need for increased training on climate change, engaging senior leadership and administrators on climate change and developing regional strategies. Preparing for and mitigating the impact of climate change on the facilities and holdings needs to become a priority. Originality/value This research underscores the importance of developing climate adaptation strategies, considering the sustainability of records management and archival professional practice, increasing the resilience of the facilities and records and strengthening the disaster planning and recovery methods.


Sign in / Sign up

Export Citation Format

Share Document