scholarly journals Influence of temperature and CO<sub>2</sub> on the strontium and magnesium composition of coccolithophore calcite

2013 ◽  
Vol 10 (10) ◽  
pp. 15559-15586
Author(s):  
M. N. Müller ◽  
M. Lebrato ◽  
U. Riebesell ◽  
J. Barcelos e Ramos ◽  
K. G. Schulz ◽  
...  

Abstract. Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca paleoproxy calibration.

2014 ◽  
Vol 11 (4) ◽  
pp. 1065-1075 ◽  
Author(s):  
M. N. Müller ◽  
M. Lebrato ◽  
U. Riebesell ◽  
J. Barcelos e Ramos ◽  
K. G. Schulz ◽  
...  

Abstract. Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene–Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.


2017 ◽  
Vol 114 (46) ◽  
pp. E9765-E9766 ◽  
Author(s):  
Christopher J. Gobler ◽  
Theresa K. Hattenrath-Lehmann ◽  
Owen M. Doherty ◽  
Andrew W. Griffith ◽  
Yoonja Kang ◽  
...  

2008 ◽  
pp. 94-109 ◽  
Author(s):  
D. Sorokin

The problem of the Russian economy’s growth rates is considered in the article in the context of Russia’s backwardness regarding GDP per capita in comparison with the developed countries. The author stresses the urgency of modernization of the real sector of the economy and the recovery of the country’s human capital. For reaching these goals short- or mid-term programs are not sufficient. Economic policy needs a long-term (15-20 years) strategy, otherwise Russia will be condemned to economic inertia and multiplying structural disproportions.


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


1999 ◽  
Vol 34 (2) ◽  
pp. 109-115 ◽  
Author(s):  
J.-L. Mouget ◽  
G. Tremblin ◽  
A. Morant-Manceau ◽  
M. Morançais ◽  
J.-M. Robert
Keyword(s):  

2018 ◽  
Vol 48 (7) ◽  
pp. 809-820 ◽  
Author(s):  
Neil P. Thompson ◽  
Kathy J. Lewis ◽  
Lisa M. Poirier

Drought tolerance of trees may be affected by competition, but most studies quantifying the relationship do not consider the effect of stem clustering. Trees are often clustered in interior Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco) forests near the grassland interface in central British Columbia due to past harvesting practices or habitat management for mule deer (Odocoileus hemionus hemionus (Rafinesque, 1817)). Climate change projections indicate continued increases in temperature, an outcome that would stress trees growing in dry environments. Trees placed in different states of competition by mechanical harvesting in the 1970s were sampled to provide a 40-year comparison of three levels of competition during 1–2 year droughts. Tree-ring analysis was used to assess the reduction in growth during drought years and resumption of growth in subsequent years. A clear separation of growth rates was evident between open-growing trees, trees on the edge of harvesting trails, and trees within the unharvested interior. Edge trees had intermediate growth rates but no differences were found in the long-term climate–growth relationship compared with open-growing trees. Both Edge and Open classes showed less relative growth reduction during droughts than Interior trees growing between harvest trails. Precipitation throughfall rates and competition for resources are likely driving short-term drought tolerance in combination with other factors.


Author(s):  
J.A. Baars ◽  
G.J. Goold ◽  
M.F. Hawke ◽  
P.J. Kilgarriff ◽  
M.D. Rolm

Patterns of pasture growth were measured on 3 farms in the Bay of Plenty (BOP) and at No2 Dairy (Ruakura Agricultural Centre) in the Waikato from 1989 to 199 1. A standardised trim technique with cages and 4-weekly cutting under grazing was used. Long-term seasonal growth patterns, using a predictive pasture model, were also simulated. Simulated pasture growth from long-term climatic data shows that pasture growth rates are higher in winter, early spring and late autumn in the BOP than the Waikato. However, the actual measurements over the 2 years show that pasture growth over the latter periods is lower at the BOP sites than at the Waikato site. In the BOP the spring peak is much later than in the Waikato while an early summer peak, with higher growth rates than in the Waikato, occurred in the BOP. No such summer peak was evident in the Waikato. The difference between the two regions is caused by the large contribution of subtropical grasses to sward production in summer and autumn, The prolific summer growth of subtropical grasses may explain the low ryegrass content and low pasture production in winter. The lower than expected autumn, winter, spring production may also becaused by low clover content, possibly a result of competition from subtropical grasses and a sulphur deficiency. The apparent low amount of nitrogen fixed by clover may explain the low rates of pasture production over the cooler season. Applications of nitrogen fertiliser may substantially increase dry matter production from April to September. Keywords pasture,simulation,subtropical grasses, Paspalum, Digitaria sanguinalis, growth rates


2022 ◽  
Vol 10 (1) ◽  
pp. 190
Author(s):  
Ida Romano ◽  
Carlo Camerlingo ◽  
Lisa Vaccari ◽  
Giovanni Birarda ◽  
Annarita Poli ◽  
...  

A main factor hampering life in space is represented by high atomic number nuclei and energy (HZE) ions that constitute about 1% of the galactic cosmic rays. In the frame of the “STARLIFE” project, we accessed the Heavy Ion Medical Accelerator (HIMAC) facility of the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. By means of this facility, the extremophilic species Haloterrigena hispanica and Parageobacillus thermantarcticus were irradiated with high LET ions (i.e., Fe, Ar, and He ions) at doses corresponding to long permanence in the space environment. The survivability of HZE-treated cells depended upon either the storage time and the hydration state during irradiation; indeed, dry samples were shown to be more resistant than hydrated ones. With particular regard to spores of the species P. thermantarcticus, they were the most resistant to irradiation in a water medium: an analysis of the changes in their biochemical fingerprinting during irradiation showed that, below the survivability threshold, the spores undergo to a germination-like process, while for higher doses, inactivation takes place as a consequence of the concomitant release of the core’s content and a loss of integrity of the main cellular components. Overall, the results reported here suggest that the selected extremophilic microorganisms could serve as biological model for space simulation and/or real space condition exposure, since they showed good resistance to ionizing radiation exposure and were able to resume cellular growth after long-term storage.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7330
Author(s):  
Teemu Saikkonen ◽  
Varpu Vahtera ◽  
Seppo Koponen ◽  
Otso Suominen

The effect of reindeer Rangifer tarandus L. grazing on the ground-dwelling spider assemblage in Northern Finland was studied. Changes in species richness, abundance and evenness of spider assemblages were analyzed in relation to changes in vegetation and environmental factors in long term grazed and ungrazed sites as well as sites that had recently switched from grazed to ungrazed and vice versa. Grazing was found to have a significant impact on height and biomass of lichens and other ground vegetation. However, it seemed not to have an impact on the total abundance of spiders. This is likely caused by opposing family and species level responses of spiders to the grazing regime. Lycosid numbers were highest in grazed and linyphiid numbers in ungrazed areas. Lycosidae species richness was highest in ungrazed areas whereas Linyphiidae richness showed no response to grazing. Four Linyphiidae, one Thomisidae and one Lycosidae species showed strong preference for specific treatments. Sites that had recovered from grazing for nine years and the sites that were grazed for the last nine years but were previously ungrazed resembled the long term grazed sites. The results emphasize the importance of reindeer as a modifier of boreal forest ecosystems but the impact of reindeer grazing on spiders seems to be family and species specific. The sites with reversed grazing treatment demonstrate that recovery from strong grazing pressure at these high latitudes is a slow process whereas reindeer can rapidly change the conditions in previously ungrazed sites similar to long term heavily grazed conditions.


Sign in / Sign up

Export Citation Format

Share Document