scholarly journals Dissolved organic carbon release by marine macrophytes

2012 ◽  
Vol 9 (2) ◽  
pp. 1529-1555 ◽  
Author(s):  
C. Barrón ◽  
E. T. Apostolaki ◽  
C. M. Duarte

Abstract. Estimates of dissolved organic carbon (DOC) release by marine macrophyte communities (seagrass meadows and macroalgal beds) were obtained experimentally using in situ benthic chambers. The effect of light availability on DOC release by macrophyte communities was examined in two communities both by comparing net DOC release under light and dark, and by examining the response of net DOC release to longer-term (days) experimental shading of the communities. All most 85% of the seagrass communities and almost all of macroalgal communities examined acted as net sources of DOC. There was a weak tendency for higher DOC fluxes under light than under dark conditions in seagrass meadow. There is no relationship between net DOC fluxes and gross primary production (GPP) and net community production (NCP), however, this relationship is positive between net DOC fluxes and community respiration. Net DOC fluxes were not affected by shading of a T. testudinum community in Florida for 5 days, however, shading of a mixed seagrass meadow in the Philippines led to a significant reduction on the net DOC release when shading was maintained for 6 days compared to only 2 days of shading. Based on published and unpublished results we also estimate the global net DOC production by marine macrophytes. The estimated global net DOC flux, and hence export, from marine macrophyte is about 0.197 ± 0.015 Pg C yr−1 or 0.212 ± 0.016 Pg C yr−1 depending if net DOC flux by seagrass meadows was estimated by taking into account the low or high global seagrass area, respectively.

2018 ◽  
Vol 61 (5) ◽  
pp. 441-451 ◽  
Author(s):  
Ekkalak Rattanachot ◽  
Milica Stankovic ◽  
Supaphon Aongsara ◽  
Anchana Prathep

Abstract Seagrasses are known as engineering ecosystems that play important roles in coastal environments. Globally, seagrass areas have been declining, and many conservation projects have been carried out to prevent further decline. The goal of this work was to determine how successful conservation efforts have been in a seagrass meadow at Koh Tha Rai in the Nakhon Si Thammarat Province of southern Thailand in terms of meadow extent, coverage and organic carbon storage. A study was conducted in 2017 and compared to a previous study from 2006 to determine the effects of the various conservation efforts devoted to this area. The results show that the total seagrass area increased by 0.7 ha with a rate of increase of approximately 0.06 ha year−1. The total coverage of seagrass increased by approximately 3 times. The organic carbon in existing seagrass meadows (2006) was 53.35 Mg ha−1, while growth was 32.34 Mg ha−1 in the areas of new seagrass. Moreover, the total organic carbon storage in the sediment increased by 26.86 MgC from 2006 to 2017 (from 211.60 MgC to 235.46 MgC). In conclusion, this study demonstrated the importance of successful conservation efforts in terms of increasing seagrass meadow areas, seagrass coverage and carbon storage within the meadow.


2020 ◽  
Vol 17 (3) ◽  
pp. 581-595
Author(s):  
Keri L. Bowering ◽  
Kate A. Edwards ◽  
Karen Prestegaard ◽  
Xinbiao Zhu ◽  
Susan E. Ziegler

Abstract. Boreal forests are subject to a wide range of temporally and spatially variable environmental conditions driven by season, climate, and disturbances such as forest harvesting and climate change. We captured dissolved organic carbon (DOC) from surface organic (O) horizons in a boreal forest hillslope using passive pan lysimeters in order to identify controls and hot moments of DOC mobilization from this key C source. We specifically addressed (1) how DOC fluxes from O horizons vary on a weekly to seasonal basis in forest and paired harvested plots and (2) how soil temperature, soil moisture, and water input relate to DOC flux trends in these plots over time. The total annual DOC flux from O horizons contain contributions from both vertical and lateral flow and was 30 % greater in the harvested plots than in the forest plots (54 g C m−2 vs. 38 g C m−2, respectively; p=0.008). This was despite smaller aboveground C inputs and smaller soil organic carbon stocks in the harvested plots but analogous to larger annual O horizon water fluxes measured in the harvested plots. Water input, measured as rain, throughfall, and/or snowmelt depending on season and plot type, was positively correlated to variations in O horizon water fluxes and DOC fluxes within the study year. Soil temperature was positively correlated to temporal variations of DOC concentration ([DOC]) of soil water and negatively correlated with water fluxes, but no relationship existed between soil temperature and DOC fluxes at the weekly to monthly scale. The relationship between water input to soil and DOC fluxes was seasonally dependent in both plot types. In summer, a water limitation on DOC flux existed where weekly periods of no flux alternated with periods of large fluxes at high DOC concentrations. This suggests that DOC fluxes were water-limited and that increased water fluxes over this period result in proportional increases in DOC fluxes. In contrast, a flushing of DOC from O horizons (observed as decreasing DOC concentrations) occurred during increasing water input and decreasing soil temperature in autumn, prior to snowpack development. Soils of both plot types remained snow-covered all winter, which protected soils from frost and limited percolation. The largest water input and soil water fluxes occurred during spring snowmelt but did not result in the largest fluxes of DOC, suggesting a production limitation on DOC fluxes over both the wet autumn and snowmelt periods. While future increases in annual precipitation could lead to increased DOC fluxes, the magnitude of this response will be dependent on the type and intra-annual distribution of this increased precipitation.


2010 ◽  
Vol 7 (12) ◽  
pp. 4051-4057 ◽  
Author(s):  
C. M. Duarte ◽  
Y. T. Prairie ◽  
T. K. Frazer ◽  
M. V. Hoyer ◽  
S. K. Notestein ◽  
...  

Abstract. The concentration of dissolved organic carbon (DOC) in groundwater emanating as spring discharge at several locations in Florida, USA and the net increase in DOC in the downstream receiving waters were measured as part of a larger investigation of carbon dynamics in flowing waters. Springs with high discharge (>2.8 m3 s−1) were found to be the most organic-poor natural waters yet reported (13 ± 1.6 μmol C L−1), while springs with lesser discharge exhibited somewhat higher DOC concentrations (values ranging from 30 to 77 μmol C L−1). DOC concentrations increased rapidly downstream from the point of spring discharge, with the calculated net areal input rate of DOC ranging from 0.04 to 1.64 mol C m−2 d−1 across springs. Rates of DOC increase were generally greater in those springs with high discharge rates. These input rates compare favorably with values reported for gross primary production in these macrophyte-dominated spring systems, assuming that 17% of macrophyte primary production is lost, on average, as DOC. The measures reported here are possible only because of the remarkably low DOC levels in the up-surging groundwaters and the short residency times of the water in the spring-runs themselves.


2020 ◽  
Author(s):  
Fred Worrall ◽  
Nicholas Howden ◽  
Timothy Burt

<p>Dissolved organic carbon (DOC) represents an important component of the terrestrial and fluvial carbon cycle as it represents a flux from terrestrial carbon stores and while it transfers through the fluvial network it can be processed to release greenhouse gases to the atmosphere. Furthermore, DOC is a major water resource limitation as the dissolved organic matter has to be removed prior to treatment. Therefore, we need to understand the concentration and fluxes of DOC and they change across a landscape between the terrestrial source and the tidal limit.</p><p>Our ability to understand the processing of terrestrial and fluvial carbon has been limited by the range of catchments that have been considered and the time scale over which they have been considered. Studies focused on similar catchment types and very little means of comparing between catchments. However, if we can access and understand large datasets we can find general principles which control DOC and the relative importance of these controls. In this study we use two datasets. The first, is a dataset sampled across the UK for major rivers (270 catchments) from 1974 and this dataset is ideal for understanding flux to the continental shelf and this dataset has over 50000 datapoints. Secondly, many of these sites are monitored for a rang e of other parameters that are related to the composition of the dissolved organic matter. The important covariates for DOM composition are BOD, which is a measure of DOM decomposition, and COD which is measure of the oxidation state of the DOM. All the study catchments could be characterised by a range of covariate information, eg. soil cover, land use, hydro-climatology. To make maximum use of this data the dataset was considered within a Bayesian hierarchical framework.</p><p>The concentrations of DOC from the UK rose for the 1974 on to the late 1990s before a decline to 2007-08. The decline was driven by changes in urban sources, particular by improvements in sewage treatment. The DOC flux from the UK has declined since a peak in 2000 and in 2017 was 767 ktonnes C/yr (95% credible interval 644 – 909 ktonnesC/yr). Modelling composition turnover gives the DOC flux from source as 3.5 Mtonnes C/yr with 2.6 Mtonnes C/yr lost to atmosphere (14 Mtonnes CO<sub>2eq</sub>/yr = 59 tonnes CO<sub>2eq</sub>/km2/yr).</p>


2010 ◽  
Vol 7 (4) ◽  
pp. 5253-5267
Author(s):  
C. M. Duarte ◽  
R. Martínez ◽  
Y. T. Prairie ◽  
T. K. Frazer ◽  
M. V. Hoyer ◽  
...  

Abstract. The concentration of dissolved organic carbon (DOC) in groundwater emanating as spring discharge at several locations in Florida, USA, and the net rate of DOC increase in the downstream receiving waters were measured as part of a larger investigation of carbon dynamics in flowing waters. Springs with high discharge (>2.8 m3 s−1) were found to be the most organic-poor natural waters yet reported (13 ±1.6 μmol C L−1), while springs with lesser discharge exhibited somewhat higher DOC concentrations (values ranging from 30 to 77 μmol C L−1). DOC concentrations increased rapidly downstream from the point of spring discharge, with the calculated net areal input rate of DOC ranging from 0.04 to 1.64 mol C m−2 d−1 across springs. Rates of DOC increase were generally greater in those springs with high discharge rates. These input rates compare favorably with values reported for gross primary production in these macrophyte-dominated spring systems, assuming that 17% of macrophyte primary production is lost, on average, as DOC. The measures reported here are possible only because of the remarkably low DOC levels in the up-surging groundwaters and the short residency times of the water in the spring-runs themselves.


2005 ◽  
Vol 35 (9) ◽  
pp. 2130-2140 ◽  
Author(s):  
A S Prokushkin ◽  
T Kajimoto ◽  
S G Prokushkin ◽  
W H McDowell ◽  
A P Abaimov ◽  
...  

Fluxes of dissolved organic carbon (DOC) in forested watersheds underlain by permafrost are likely to vary with changes in climatic regime that increase soil moisture and temperature. We examined the effects of temporal and spatial variations in soil temperature and moisture on DOC fluxes from the forest floor of contrasting north- and south-facing slopes in central Siberia. DOC fluxes increased throughout the growing season (June–September) on both slopes in 2002 and 2003. The most favorable combination of moisture content and temperature (deepest active soil layer) occurred in September, and we believe this was the primary driver of increased DOC concentrations and flux in autumn. Total DOC flux for June–September was 12.6–17.6 g C·m–2 on the south-facing slope and 4.6–8.9 g C·m–2 on the north-facing slope. DOC concentrations in forest floor leachates increased with increasing temperature on the north-facing slope, but were almost unaffected by temperature on the south-facing slope. Our results suggest that water input in midseason from melting of ice or precipitation events is the primary factor limiting DOC production. Significant positive correlations between amounts of precipitation and DOC flux were found on both slopes. Dilution of DOC concentrations by high precipitation volumes was observed only for the forest floor leachates collected from the north-facing slope. Our results suggest that global warming will result in increased DOC production in forest floors of permafrost regions, and that precipitation patterns will play an important role in determining the magnitude of these changes in DOC flux as well as its interannual variability. However, the longer-term response of soils and DOC flux to a warming climate will be driven by changes in vegetation and microbial communities as well as by the direct results of temperature and moisture conditions.


2017 ◽  
Vol 14 (20) ◽  
pp. 4563-4576 ◽  
Author(s):  
Jordan P. Goodrich ◽  
David I. Campbell ◽  
Louis A. Schipper

Abstract. Peatland ecosystems have been important global carbon sinks throughout the Holocene. Most of the research on peatland carbon budgets and effects of variable weather conditions has been done in Northern Hemisphere Sphagnum-dominated systems. Given their importance in other geographic and climatic regions, a better understanding of peatland carbon dynamics is needed across the spectrum of global peatland types. In New Zealand, much of the historic peatland area has been drained for agriculture but little is known about rates of carbon exchange and storage in unaltered peatland remnants that are dominated by the jointed wire rush, Empodisma robustum. We used eddy covariance to measure ecosystem-scale CO2 and CH4 fluxes and a water balance approach to estimate the sub-surface flux of dissolved organic carbon from the largest remaining raised peat bog in New Zealand, Kopuatai bog. The net ecosystem carbon balance (NECB) was estimated over four years, which included two drought summers, a relatively wet summer, and a meteorologically average summer. In all measurement years, the bog was a substantial sink for carbon, ranging from 134.7 to 216.9 gC m−2 yr−1, owing to the large annual net ecosystem production (161.8 to 244.9 gCO2–C m−2 yr−1). Annual methane fluxes were large relative to most Northern Hemisphere peatlands (14.2 to 21.9 gCH4–C m−2 yr−1), although summer and autumn emissions were highly sensitive to dry conditions, leading to very predictable seasonality according to water table position. The annual flux of dissolved organic carbon was similar in magnitude to methane emissions but less variable, ranging from 11.7 to 12.8 gC m−2 yr−1. Dry conditions experienced during late summer droughts led to significant reductions in annual carbon storage, which resulted nearly equally from enhanced ecosystem respiration due to lowered water tables and increased temperatures, and from reduced gross primary production due to vapor pressure deficit-related stresses to the vegetation. However, the net C uptake of Kopuatai bog during drought years was large relative to even the maximum reported NECB from Northern Hemisphere bogs. Furthermore, global warming potential fluxes indicated the bog was a strong sink for greenhouse gases in all years despite the relatively large annual methane emissions. Our results suggest that adaptations of E. robustum to dry conditions lead to a resilient peatland drought response of the NECB.


2017 ◽  
Author(s):  
Cara A. Bulger ◽  
Suzanne E. Tank ◽  
Steven V. Kokelj

Abstract. In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTS) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the continental ice sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high, and total disturbed areas often exceeding 30 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to a conservative tracer suggest that the substantial fine-grained sediments released by slumping may sequester DOC on this landscape. Runoff obtained directly from within slump features, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS feature indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect striking variation in thermokarst-associated DOC mobilization across Arctic regions, but that within-region variation in thermokarst intensity and other landscape factors are also important for determining biogeochemical response. An understanding of landscape and climate history, permafrost genesis, soil composition, the nature and intensity of thermokarst, and the interaction of these factors, is critical for predicting changes in land-to-water carbon mobilization in a warming circumpolar world.


2016 ◽  
Vol 10 (6) ◽  
pp. 2611-2621 ◽  
Author(s):  
Fangping Yan ◽  
Shichang Kang ◽  
Chaoliu Li ◽  
Yulan Zhang ◽  
Xiang Qin ◽  
...  

Abstract. Light-absorbing dissolved organic carbon (DOC) constitutes a major part of the organic carbon in glacierized regions, and has important influences on the carbon cycle and radiative forcing of glaciers. However, few DOC data are currently available from the glacierized regions of the Tibetan Plateau (TP). In this study, DOC characteristics of a medium-sized valley glacier (Laohugou Glacier No. 12, LHG) on the northern TP were investigated. Generally, DOC concentrations on LHG were comparable to those in other regions around the world. DOC concentrations in snow pits, surface snow and surface ice (superimposed ice) were 332 ± 132, 229 ± 104 and 426 ± 270 µg L−1, respectively. The average discharge-weighted DOC of proglacial stream water was 238 ± 96 µg L−1, and the annual DOC flux released from this glacier was estimated to be 6949 kg C yr−1, of which 46.2 % of DOC was bioavailable and could be decomposed into CO2 within 1 month of its release. The mass absorption cross section (MAC) of DOC at 365 nm was 1.4 ± 0.4 m2 g−1 in snow and 1.3 ± 0.7 m2 g−1 in ice, similar to the values for dust transported from adjacent deserts. Moreover, there was a significant relationship between DOC and Ca2+; therefore, mineral dust transported from adjacent arid regions likely made important contributions to DOC of the glacierized regions, although contributions from autochthonous carbon and autochthonous/heterotrophic microbial activity cannot be ruled out. The radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, demonstrating that DOC in snow needs to be taken into consideration in accelerating melt of glaciers on the TP.


Sign in / Sign up

Export Citation Format

Share Document