scholarly journals CFD simulations to optimize the blade design of water wheels

2017 ◽  
Vol 10 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Emanuele Quaranta ◽  
Roberto Revelli

Abstract. At low head sites and at low discharges, water wheels can be considered among the most convenient hydropower converters to install. The aim of this work is to improve the performance of an existing breastshot water wheel by changing the blade shape using computational fluid dynamic (CFD) simulations. Three optimal profiles are investigated: the profile of the existing blades, a circular profile and an elliptical profile. The results are validated by performing experimental tests on the wheel with the existing profile. The numerical results show that the efficiency of breastshot wheels is affected by the blade profile. The average increase in efficiency using the new circular profile is about 4 % with respect to the profile of the existing blades.

2017 ◽  
Author(s):  
Emanuele Quaranta ◽  
Roberto Revelli

Abstract. In low head sites and at low discharges, water wheels can be considered among the most convenient hydropower converters to install. The scope of this work is to improve the performance of an existing breastshot water wheel changing the blades shape, using Computational Fluid Dynamic (CFD) simulations. Three optimal profiles are investigated: the profile of the existing blades, a circular profile and an elliptical profile. The results are validated performing experimental tests on the wheel with the existing profile. The numerical results show that the efficiency of breastshot wheels is affected by the blades profile. The average increase in efficiency using the new circular profile is about 4 % with respect to the profile of the existing blades.


Author(s):  
Tommaso Bonanni ◽  
Alessandro Corsini ◽  
Giovanni Delibra ◽  
David Volponi ◽  
Anthony G. Sheard ◽  
...  

The European Union imposed minimum industrial fan efficiency levels in 2013 and then increased them in 2015. In the USA, the Department of Energy (DoE) is also developing regulations aimed at eliminating inefficient industrial fans from the market by 2023. A consequence of this regulatory activity is a need to apply design methods originally developed within the aerospace community to the design of high efficiency industrial fans. In this paper, we present a process used to design, numerically verify and experimentally test a high-pressure single-stage axial fan. The goal was a fan design capable of working over a range of blade angles in combination with a single fixed cambered plate stator. We present the process used when selecting blade airfoil sections and the vortex distribution along the blade span. The selected methodology is based on a coupling between the aerodynamic response of each blade profile and the chosen vortex distribution, creating a direct link between the load distribution and the aerodynamic capability of the blade profile section. This link is used to develop radial distributions of blade twist and chord for the selected blade profiles that result in the required radial work distribution. The design method has been enhanced through intermediate verifications using two different numerical methodologies. The methodologies are based on different approaches, in so doing providing confidence in the verification process. The final blade design has been analyzed using a three-dimensional computational fluid dynamic (CFD) code. Results of the CFD analysis indicate that performance of the final blade design is consistent with the design specifications. The paper concludes with a comparison between predicted and experimentally measured performance. The need is clarified for balance between computational and empirical approaches. When used together the development effort results in a lower cost and higher efficiency design than would have been possible using either approach in isolation.


2013 ◽  
Vol 9 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Eleonora Bottani ◽  
Gino Ferretti ◽  
Michele Manfredi ◽  
Giuseppe Vignali

AbstractThis work aims to analyze and predict the thermal pasteurization process for two types of fresh pasta, by means of computational fluid dynamic (CFD) simulation. The types of pasta considered are “ravioli” filled of meat and “orecchiette”, without filling. Thanks to many studies on pasta properties, some parameters, such as thermal conductivity and heat capacity, are previously determined for both products. CFD simulations are, thus, performed using ANSYS CFX code version 14.5 in a transient state (after 150 s for ravioli and after 45 s for orecchiette), to evaluate the pasteurization temperature and the P-value reached on the surface of the orecchiette and at the core of the ravioli, as a function of the process time. The heat exchange takes place in a pasteurization tunnel by means of water vapor at ~371 K. Experimental tests are finally performed to validate the simulation model of heat exchange. Results show a good agreement between the simulated results and the real pasteurization process and confirm the potential usefulness of the simulation model to evaluate the process performance.


Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.


1969 ◽  
Vol 11 (5) ◽  
pp. 454-467 ◽  
Author(s):  
K. Murugesan ◽  
J. W. Railly

An extension of Martensen's method is described which permits an exact solution of the inverse or blade design problem. An equation is derived for the normal velocity distributed about a given contour when a given tangential velocity is imposed about the contour and from this normal velocity an initial arbitrarily chosen blade shape may be successively modified until a blade is found having a desired surface velocity distribution. Five examples of the method are given.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


Author(s):  
Gisele C. de A. Cunha ◽  
José P. Lopes Neto ◽  
Dermeval A. Furtado ◽  
Valéria P. Borges ◽  
Elias A. Freire ◽  
...  

ABSTRACT Negative pressure ventilation in poultry houses has been used to enable the correction of their internal microclimates, and studies point to the heterogeneous distribution of air along the aviaries and the inadequacy of the environmental variables to the recommended ranges for thermal comfort of adult birds, especially in the hottest hours of the day. This study aimed to diagnose the facilities of a poultry house in the state of Paraíba, Brazil, regarding the distribution of environmental variables and thermal comfort; develop a computational model and validate it for Computational Fluid Dynamic - CFD simulations. Air temperature (Tair), air relative humidity (RH) and air velocity (Vair) data allowed characterizing the internal environment by comparison with the recommended ranges for each variable and by the temperature-humidity-velocity index (THVI). The poultry house does not provide comfort for the housed adult birds, between 12 and 14 h, with THVI indicating alert and Tair, RH and Vair values outside the recommended ranges; the CFD model for the poultry house was validated with Tair averages collected in the field of 27.75 ± 1.35 ºC and simulated of 27.85 ± 0.55 ºC, mean values of RH collected of 83 ± 12% and simulated of 78 ± 3%, and means of Vair collected of 2.35 ± 1.35 m s-1 and simulated of 2.50 ± 1.50 m s-1.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6661
Author(s):  
Vladimir Anatolyevich Markov ◽  
Bowen Sa ◽  
Sergey Nikolaevich Devyanin ◽  
Anatoly Anatolyevich Zherdev ◽  
Pablo Ramon Vallejo Maldonado ◽  
...  

The article discusses the possibility of using blended biofuels from rapeseed oil (RO) as fuel for a diesel engine. RO blended diesel fuel (DF) and emulsified multicomponent biofuels have been investigated. Fuel physicochemical properties have been analyzed. Experimental tests of a diesel engine D-245 in the operating conditions of the external characteristic curve and the 13-mode test cycle have been conducted to investigate the effect of these fuels on engine performances. CFD simulations of the nozzle inner flow were performed for DF and ethanol-emulsified RO. The possibility of a significant improvement in brake thermal efficiency of the engine has been noted. The efficiency of using blended biofuels from RO as a motor fuel for diesel engines has been evaluated based on the experimental test results. It was shown that in comparison with the presence of RO in emulsified multicomponent biofuel, the presence of water has a more significant effect on NOx emission reduction. The content of RO and the content of water in the investigated emulsified fuels have a comparable influence on exhaust smoke reduction. Nozzle inner flow simulations show that the emulsification of RO changes its flow behaviors and cavitation regime.


Sign in / Sign up

Export Citation Format

Share Document