scholarly journals Adsorption and Desorption studies of <i>Delonix regiapods</i> and leaves: Removal and recovery of Ni(II) and Cu(II) ions from aqueous solution

2019 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Cecilia O. Akintayo ◽  
Olushola S. Ayanda ◽  
Sunday F. Abimbade ◽  
...  

Abstract. In this study, the adsorption of Ni(II) and Cu(II) ions from aqueous solutions by powdered pods and leaves of Delonix regia was investigated by batch adsorption techniques. The effects of operating conditions such as pH, contact time, metal ions concentration and the presence of sodium ions interfering on the sorption process were investigated. The results obtained showed that the equilibrium sorption was attained within 30 min of interaction and the adsorption process followed the pseudo-second-order kinetic model for all the metal sorption with the exception of Cu(II) sorption on the leaves. The equilibrium data fitted well with both the Langmiur and Freundlich Isotherms; the desorption study revealed that the percentage of metal ions recovered from the pods were higher than the leaves at various concentration of nitric acid. This study has proven that Delonix regia biomass, an agro-waste could be used for removing Ni(II) and Cu(II) ions from wastewater.

2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ &gt; Cd2+ &gt; Zn2+ &gt; Cu2+ &gt; Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ &gt; Cu2+ &gt; Zn2+ &gt; Cd2+ &gt; Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2020 ◽  
Vol 13 (2) ◽  
pp. 15-27 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Cecilia O. Akintayo ◽  
Olayide S. Lawal ◽  
Sunday F. Abimbade ◽  
...  

Abstract. In this study, the adsorption of Ni(II) and Cu(II) ions from aqueous solutions by powdered Delonix regia pods and leaves was investigated using batch adsorption techniques. The effects of operating conditions such as pH, contact time, adsorbent dosage, metal ion concentration and the presence of sodium ions interfering with the sorption process were investigated. The results obtained showed that equilibrium sorption was attained within 30 min of interaction, and an increase in the initial concentration of the adsorbate, pH and adsorbent dosage led to an increase in the amount of Ni(II) and Cu(II) ions adsorbed. The adsorption process followed the pseudo-second-order kinetic model for all metal ions' sorption. The equilibrium data fitted well with both the Langmuir and Freundlich isotherms; the monolayer adsorption capacity (Q0 mg g−1) of the Delonix regia pods and leaves was 5.88 and 5.77 mg g−1 for Ni(II) ions respectively and 9.12 and 9.01 mg g−1 for Cu(II) ions respectively. The efficiency of the powdered pods and leaves of Delonix regia with respect to the removal of Ni(II) and Cu(II) ions was greater than 80 %, except for the sorption of Ni(II) ions onto the leaves. The desorption study revealed that the percentage of metal ions recovered from the pods was higher than that recovered from the leaves at various nitric acid concentrations. This study proves that Delonix regia biomass, an agricultural waste product (“agro-waste”), could be used to remove Ni(II) and Cu(II) ions from aqueous solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tamirat Dula ◽  
Khalid Siraj ◽  
Shimeles Addisu Kitte

This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters showed that adsorption on the surface of BWAC was feasible, spontaneous in nature, and exothermic between temperatures of 298 and 318 K. The equilibrium data better fitted the Freundlich isotherm model for studying the adsorption behavior of Hexavalent Chromium by BWAC. IR spectrum for loaded and unloaded BWAC was obtained using FT-IR spectrophotometer. Adsorption efficiency and capacity of Hexavalent Chromium were found to be 98.28% at pH 2 and 59.23 mg/g at 300 K.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2012 ◽  
Vol 65 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Messaouda Safa ◽  
Mohammed Larouci ◽  
Boumediene Meddah ◽  
Pierre Valemens

The adsorption of Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu2+, Zn2+, Cd2+ and Pb2+ were 0.319, 0.311, 0.18 and 0.096 mmol g−1, respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.


2016 ◽  
Vol 16 (4) ◽  
pp. 992-1001 ◽  
Author(s):  
Jasmina Nikić ◽  
Jasmina Agbaba ◽  
Malcolm Watson ◽  
Snežana Maletić ◽  
Jelena Molnar Jazić ◽  
...  

A series of Fe–Mn binary oxides with different Fe:Mn ratios (1:1, 3:1, 6:1, 9:1) were synthesized to investigate the optimal Fe:Mn ratio for the removal of As(III) and As(V). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherms. Adsorption kinetics were well described by the pseudo-second-order kinetic model for both As(III) and As(V). The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherms. The maximum As(V) sorption capacity was observed at an Fe:Mn ratio of 6:1 (65.0 mg/g), whereas maximum As(III) uptake was at Fe:Mn ratio 3:1 (46.9 mg/g). Arsenic levels in real water samples were reduced from 37 μg/l to below the EU Water Framework Directive limit (10 μg/L) after treatment with Fe–Mn adsorbents.


2021 ◽  
Vol 309 ◽  
pp. 01077
Author(s):  
M Tukaram Bai ◽  
Ch. I. A. Raju ◽  
V Sridevi ◽  
Nalluri Chittibabu ◽  
P Venkateswarlu

Biosorption of lead onto Fallen Coffee Plant leaves (FCPL) powder from an aqueous solution was studied in the present study. The characterization of FCPL powder was done by FTIR, XRD, SEM and BET. The equilibrium agitation time for lead biosorption is 60 min. The optimum pH and dosage values are 5.2 and 20 g/L respectively. In the range of variables studied, percentage biosorption is increased from 75.1 to 95.5 %. The maximum uptake capacity of 3.664 mg/g is obtained at 303 K. In the present investigation the equilibrium data was well explained by Langmuir, Redlich-Peterson with a correlation coefficient of 0.99, and followed by Temkin and Freundlich isotherms. The kinetic studies reveal that the biosorption system obeyed the pseudo second order kinetic model by considering the correlation coefficient value as 0.99. From the values of ∆S, ∆H and ∆G it is observed that the biosorption of lead onto Fallen coffee plant leaves(FCPL) powder was irreversible, endothermic and spontaneous.


2014 ◽  
Vol 936 ◽  
pp. 834-842
Author(s):  
Heng Liu ◽  
Na Tian ◽  
Ya Yang Tian ◽  
Chu Dai ◽  
Yan Xin Wang

The present study presents the adsorption behavior of mesoporous alumina sphere for Eriochrome black T (EBT) azo dyes. The batch adsorption experiments were carried out to optimize various experimental parameters such as contact time and dye concentration. The maximum adsorption of EBT was achieved 312.5mg/g. The kinetic studies revealed that the adsorption process followed the pseudo-second-order kinetic model. The adsorption behavior was analyzed by Langmuir and Freundlich isotherms. The values of correlation coefficients (R) showed that the Langmuir isotherm model found to be best fit. Results of study showed that Mesoporous alumina sphere proved to be highly effective for the removal of selected azo dyes.


2012 ◽  
Vol 18 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Jianwei Ren ◽  
Mokgadi Bopape ◽  
Katlego Setshedi ◽  
Jacob Kitinya ◽  
Maurice Onyango

This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II) and 250.0 for Cu(II). The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II) and Cu(II) adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.


2014 ◽  
Vol 10 (8) ◽  
pp. 3022-3036
Author(s):  
Diya Alsafadi ◽  
Bassam A. Sweileh ◽  
Fawwaz I. Khalili

Hydroquinone based polyoxalate was synthesized from oxalyl chloride and hydroquinone. The polymer was characterized with FTIR, 1H-NMR, 13C-NMR, PXRD, SEM and thermal analysis. The chelation behaviour of the polymer towards Pb(II), Cd(II), and Hg(II) in aqueous solutions was studied by batch technique as a function of contact time and pH. The polymer showed high metal uptake toward Pb(II) and Cd(II) and moderate metal uptake toward Hg(II). The adsorption capacity was not affected by the pH of solution. The adsorption data were fitted with second order kinetic model and the isotherms models of Langmuir and Freundlich. Thermodynamics measurements showed that sorption process was spontaneous. Furthermore, the chelating polymer was loaded with metal ions using fixed bed column. For regenerating the loaded polymer, different eluting agents include HNO3, H2SO4, and EDTA was investigated. The highest recovery of metal ions was achieved using HNO3, indicating that desorption process was governed by the solubility factor and cation exchange mechanism. 


Sign in / Sign up

Export Citation Format

Share Document