scholarly journals Numerical Analysis of Circular Settling Tank

2019 ◽  
Author(s):  
Elahe Chero ◽  
Anahita ghafoorisadatieh ◽  
Hamidreza Zahabi ◽  
Mohammadamin Torabi ◽  
Keivan Bina

Abstract. Nowadays, settling tank's removal efficiency is one of the most crucial matter in all Water or Wastewater Treatment Plants (WTPs or WWTPs). The unit can affect a WWTP performance and improve effluent quality provided. In this paper, geometrical aspects of a settling tank were numerically analyzed via tracer curves, finite volume method and Ansys-cfx software in which, baffle depth and diameter of a settling tank were assessed. Firstly, a previous study was similarly remodeled to verify the simulation results. The impact of tank depth variation has been numerically assessed where the outcomes showed that deeper tank could raise discharge time or Hydraulic Retention Time (HRT). Thus, extensive discharge time may result in less polluted effluent degrading more solids. However, the tank should not be considered too deep regarding economic issues. Moreover, the differential effect of baffle height was analyzed and indicated that lower height is more useful to boost HRT. Investigation of tank diameter changes also revealed that wider diameters bring broader HRT.

2019 ◽  
Vol 12 (2) ◽  
pp. 39-44 ◽  
Author(s):  
Elahe Chero ◽  
Mohammadamin Torabi ◽  
Hamidreza Zahabi ◽  
Anahita Ghafoorisadatieh ◽  
Keivan Bina

Abstract. Nowadays, a settling tank's removal efficiency is one of the most crucial matters for all water or wastewater treatment plants (WTPs or WWTPs). The unit can affect WWTP performance and improve the provided effluent quality. In this paper, the geometrical aspects of a settling tank were numerically analyzed via tracer curves, the finite-volume method, and ANSYS CFX software in which the baffle depth and diameter of a settling tank were assessed. Firstly, a previous study was similarly remodeled to verify simulation results. The impact of tank depth variation was numerically assessed where the outcomes showed that a deeper tank could raise discharge time or the hydraulic retention time (HRT). Thus, extensive discharge time may result in less polluted effluent, degrading more solids. However, the tank should not be too deeply based on costs. Moreover, the differential effect of baffle height was analyzed and indicated that lower height is more useful for boosting the HRT. An investigation of tank diameter changes also revealed that wider diameters bring about a broader HRT.


Author(s):  
Mohamed A. E. Halawa ◽  
Hanan A. Fouad ◽  
Rehab M. Elhefny ◽  
A. F. Wail

Biological treatment in wastewater treatment plants WWTPs consists of two main tanks, aeration tank and final settling tank. Aeration process using in return activated sludge system is very costly and it is required to operate WWTPs with low dissolved oxygen (DO) concentration in aeration process without risking poor effluent quality. To apply this study, a plant model for the addition of chemicals must be made with the necessary calibration of this model. Laboratory experiments were started between November 2017 and June 2018. This paper will discuss the impact of DO concentration on sludge properties by using a pilot plant model WWTP and find the optimum doses of Hydrogen peroxide H2O2 concentration with using low DO concentration to achieve good sedimentation.  In this study the DO set-point was changed every 3 weeks between 0.5 mg/l and 4.5 mg/l for a few months.  Experiments were carried out to The optimal ratio and dosage of H2O2 /Fe+2 was 5 as 30/6 mg/l. BOD, COD, TSS and VSS removal efficiency by using H2O2 /Fe+2 were 91%, 89% 90% & 89%, respectively with DO = 1.5 mg/l at an increased rates were 21.3%, 25.4%, 20% & 12.7%, respectively. Results of paper proves that the addition of optimum H2O2 will save 2 mg/l of DO concentration and providing a high cost of using electricity and mechanical equipment compared to the non-use of H2O2.


2020 ◽  
Vol 82 (12) ◽  
pp. 2920-2928
Author(s):  
S. Benzing ◽  
F. Couceiro ◽  
S. Barnett ◽  
J. B. Williams ◽  
P. Pearce ◽  
...  

Abstract Phosphorus (P) discharge from wastewater treatment plants into the environment contributes to eutrophication issues. Reactive media filters represent an effective, simple and cost-effective solution to decrease the P content. Previous research used various experimental designs and often synthetic wastewater, making assessment of real-world performance difficult. This study assesses the impact of the hydraulic retention time (HRT) on P removal using real wastewater to refine design criteria for full-scale installations. Four media were compared in column experiments for >200 days. Different HRTs were applied and initially the media achieved low P effluent concentrations of >0.1 mg/L PO4–P, increasing over time. Best P removal was observed for the highest HRT with on average >99%. HRT was seen to be the driving factor for P removal rather than media capacity. Three of the four materials showed pH levels above 12 initially, decreasing over time. Water quality parameters, including organics, solids and metals, were monitored. In-depth analysis confirmed formation of calcium phosphate precipitation on the media's surface. The results suggest the importance of an optimal HRT to achieve high P removal and show that the reactive media application is an appropriate technology for P removal on small sites if the elevated pH is addressed.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1457-1466 ◽  
Author(s):  
Kazuhiro Tanaka ◽  
Minoru Tada ◽  
Mitsuo Ito ◽  
Noritugu Shimizu

Biofilm processes are, in general, suitable for small-scale wastewater treatment plants. However, final effluent qualities of biofilm processes are not as good as those of activated sludge processes due to fine particles remaining in the effluents. To improve the effluent qualities of the Rotating Biological Contactors (RBC) process, the behavior of fine particles through the process and the removal of fine particles with solids-liquid separation methods, rapid filtration and coagulation-filtration, were investigated using the particle fraction method. The results are as follows:–An increase of the hydraulic retention time (HRT) in the RBC reactor reduced the amount of fine particles and increased the amount of coarse suspended solids of 44 µm or more in diameter, which are easily removed by clarification. Thus, the final effluent qualities were improved by the increase of HRT.–Suspended solids in effluent from the RBC process at the standard loading are so fine that improvement of the quality is not expected by only lowering the overflow rate of a final clarifier. In contrast, rapid filtration or a coagulation-filtration process is effective. The supended solid concentration and transparency of the effluent from the final clarifier was improved by a factor of two to four, and then BOD of the final effluent was removed by 40-85%.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


2003 ◽  
Vol 47 (11) ◽  
pp. 85-92 ◽  
Author(s):  
E. Cotteux ◽  
P. Duchene

The bulking that occurs in biological wastewater treatment plants using activated sludge is very often controlled by the injection of sodium hypochlorite into the return activated sludge (RAS) stream. In the present study undertaken at two pilot plants fed with synthetic wastewater, the impact of the pass frequency of the sludge at the chlorine dosing point on the nitrifying flora is analysed. The pass frequency is one for the pilot plant 1 and two for the pilot plant 2. A dose of chlorine of 4.85 ± 0.05 g/kg/MLVSS per day was applied at both pilots. The preservative effect on nitrifying activity of the lowest concentration of chlorine at the dosing point and therefore of the highest pass frequency was evidenced. Among other tools, a simple method of measurement of the oxygen uptake rate enabled us to monitor the effect of chlorination on nitrification before recording an increase in the ammonia concentration in the bulking.


2017 ◽  
Vol 76 (5) ◽  
pp. 1225-1233 ◽  
Author(s):  
M. Schäfer ◽  
I. Hobus ◽  
T. G. Schmitt

In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.


2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


Sign in / Sign up

Export Citation Format

Share Document