Advances in understanding localised variations in deformation experiments using numerical models

Author(s):  
Sebastian Cionoiu ◽  
Lucie Tajčmanová ◽  
Lyudmila Khakimova

<p>Phase transitions affect the physical properties of rocks (e.g. rheology) and control geodynamic processes at different spatial and time scales. However, the influence of deformation on phase transitions and their coupling is not well understood. <br>Previous experiments, with both assembly-induced and additionally placed mechanical heterogeneities, have shown patterns in the phase transition distribution. Numerical modelling (2D, viscous finite difference models) have been used to correlate the experimental observations with the mechanic stress state. The locally increased mean stress in the models shows the best correlation with the formation of high-pressure polymorphs in experiments (Cionoiu et al. 2019).<br>Besides the distribution of polymorphs, grain-size and deformation patterns also vary across the samples due to stress, strain and pressure variations. To better understand the mechanisms contributing to these variations, we used advanced numerical models (3D, viscoelastic) to calculate the local distribution of first order parameters as pressure, stress and strain. The modelled stress and strain patterns are compared to the experimentally produced phase transformation distribution and previous (2D) modelling results. The 2D and 3D models differ partially regarding the quantification of local stresses – an effect that mainly depends on sample geometry (coaxial vs. general-shear). However, the qualitative fit between experiments, 2D and 3D models persists (i.e. the localisation of increased stresses or strain).<br>This contribution shows how numerical models, that closely represent the sample, can further improve the understanding of processes occurring in deformation experiments. Our new results emphasize that mechanically-induced stress-variations influence the grain-size and mineralogy of rocks which feeds back on their rheology.</p><p>References: <br>Cionoiu, S., Moulas, E. & Tajčmanová, L. Impact of interseismic deformation on phase transformations and rock properties in subduction zones. Sci Rep 9, 19561 (2019)</p>

2020 ◽  
Author(s):  
Rebecca Bell

<p>The discovery of slow slip events (SSEs) at subduction margins in the last two decades has changed our understanding of how stress is released at subduction zones. Fault slip is now viewed as a continuum of different slip modes between regular earthquakes and aseismic creep, and an appreciation of seismic hazard can only be realised by understanding the full spectrum of slip. SSEs may have the potential to trigger destructive earthquakes and tsunami on faults nearby, but whether this is possible and why SSEs occur at all are two of the most important questions in earthquake seismology today. Laboratory and numerical models suggest that slow slip can be spontaneously generated under conditions of very low effective stresses, facilitated by high pore fluid pressure, but it has also been suggested that variations in frictional behaviour, potentially caused by very heterogeneous fault zone lithology, may be required to promote slow slip.</p><p>Testing these hypotheses is difficult as it requires resolving rock properties at a high resolution many km below the seabed sometimes in km’s of water, where drilling is technically challenging and expensive. Traditional geophysical methods like travel-time tomography cannot provide fine-scale enough velocity models to probe the rock properties in fault zones specifically. In the last decade, however, computational power has improved to the point where 3D full-waveform inversion (FWI) methods make it possible to use the full wavefield rather than just travel times to produce seismic velocity models with a resolution an order of magnitude better than conventional models. Although the hydrocarbon industry have demonstrated many successful examples of 3D FWI the method requires extremely high density arrays of instruments, very different to the 2D transect data collection style which is still commonly employed at subduction zones.</p><p> The north Hikurangi subduction zone, New Zealand is special, as it hosts the world’s most well characterised shallow SSEs (<2 km to 15 km below the seabed).  This makes it an ideal location to collect 3D data optimally for FWI to resolve rock properties in the slow slip zone. In 2017-2018 an unprecedentedly large 3D experiment including 3D multi-channel seismic reflection, 99 ocean bottom seismometers and 194 onshore seismometers was conducted along the north Hikurangi margin in an 100 km x 15 km area, with an average 2 km instrument spacing. In addition, IODP Expeditions 372 and 375 collected logging-while drilling and core data, and deployed two bore-hole observatories to target slow slip in the same area. In this presentation I will introduce you to this world class 3D dataset and preliminary results, which will enable high resolution 3D models of physical properties to be made to bring slow slip processes into focus.  </p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 226 ◽  
Author(s):  
Kurt Glock ◽  
Michael Tritthart ◽  
Helmut Habersack ◽  
Christoph Hauer

For centuries, scientists have been attempting to map complex hydraulic processes to empirical formulas using different flow resistance definitions, which are further applied in numerical models. Now questions arise as to how consistent the simulated results are between the model dimensions and what influence different morphologies and flow conditions have. For this reason, 1D, 2D and 3D simulations were performed and compared with each other in three study areas with up to three different discharges. A standardized, relative comparison of the models shows that after successful calibration at measured water levels, the associated 2D/1D and 3D/1D ratios are almost unity, while bed shear stresses in the 3D models are only about 62–86% of the simulated 1D values and 90–100% in the case of 2D/1D. Reasons for this can be found in different roughness definitions, in simplified geometries, in different calculation approaches, as well as in influences of the turbulence closure. Moreover, decreasing 3D/1D ratios of shear stresses were found with increasing discharges and with increasing slopes, while the equivalent 2D/1D ratios remain almost unchanged. The findings of this study should be taken into account, particularly in subsequent sediment transport simulations, as these calculations are often based on shear stresses.


2015 ◽  
Vol 1 (6) ◽  
pp. 276
Author(s):  
Maria Rashid ◽  
Wardah Mehmood ◽  
Aliya Ashraf

Eye movement tracking is a method that is now-a-days used for checking the usability problems in the contexts of Human Computer Interaction (HCI). Firstly we present eye tracking technology and key elements.We tend to evaluate the behavior of the use when they are using the interace of eye gaze. Used different techniques i.e. electro-oculography, infrared oculography, video oculography, image process techniques, scrolling techniques, different models, probable approaches i.e. shape based approach, appearance based methods, 2D and 3D models based approach and different software algorithms for pupil detection etc. We have tried to compare the surveys based on their geometric properties and reportable accuracies and eventually we conclude this study by giving some prediction regarding future eye-gaze. We point out some techniques by using various eyes properties comprising nature, appearance and gesture or some combination for eye tracking and detection. Result displays eye-gaze technique is faster and better approach for selection than a mouse selection. Rate of error for all the matters determines that there have been no errors once choosing from main menus with eye mark and with mouse. But there have been a chance of errors when once choosing from sub menus in case of eye mark. So, maintain head constantly in front of eye gaze monitor.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4288
Author(s):  
Fernanda Malhão ◽  
Ana Catarina Macedo ◽  
Carla Costa ◽  
Eduardo Rocha ◽  
Alice Abreu Ramos

Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.


2014 ◽  
Vol 532 ◽  
pp. 249-252
Author(s):  
Ying Hua Liao ◽  
Gao Jun Liu ◽  
Xiang Guo Sun

An intelligent CAD system for Involute cylindrical gear cutting tools is developed by VC++ and SQL server, and it includes four modules, such as user interface, instance query, intelligent gear tool design and database. The intelligent gear tool design is the key to the intelligent CAD system, and it is based on the forward reasoning production system, and as the Intelligent reasoning technology is used for gear tool design, a lots of expert knowledge could be made full use of. The design results by the developed intelligent CAD system are more reasonable than those by a traditional CAD system, and the efficiency and quality of the gear tool design also could be improved. The developed intelligent CAD system supports both 2D and 3D models, which can lay foundation for CAD/CAE/CAM integration of gear cutting tools.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Sorel E. De Leon ◽  
Lana Cleuren ◽  
Zay Yar Oo ◽  
Paul R. Stoddart ◽  
Sally L. McArthur

Three-dimensional (3D) cell cultures have recently emerged as tools for biologically modelling the human body. As 3D models make their way into laboratories there is a need to develop characterisation techniques that are sensitive enough to monitor the cells in real time and without the need for chemical labels. Impedance spectroscopy has been shown to address both of these challenges, but there has been little research into the full impedance spectrum and how the different components of the system affect the impedance signal. Here we investigate the impedance of human fibroblast cells in 2D and 3D collagen gel cultures across a broad range of frequencies (10 Hz to 5 MHz) using a commercial well with in-plane electrodes. At low frequencies in both 2D and 3D models it was observed that protein adsorption influences the magnitude of the impedance for the cell-free samples. This effect was eliminated once cells were introduced to the systems. Cell proliferation could be monitored in 2D at intermediate frequencies (30 kHz). However, the in-plane electrodes were unable to detect any changes in the impedance at any frequency when the cells were cultured in the 3D collagen gel. The results suggest that in designing impedance measurement devices, both the nature and distribution of the cells within the 3D culture as well as the architecture of the electrodes are key variables.


2019 ◽  
Vol 20 (01) ◽  
pp. 1950079
Author(s):  
MATTHEW JIAN-QIAO PENG ◽  
HONGWEN XU ◽  
HAI-YAN CHEN ◽  
XIANGYANG JU ◽  
YONG HU ◽  
...  

Little is known about why and how biomechanics govern the hypothesis that three-Lag-Screw (3LS) fixation is a preferred therapeutic technique. A series models of surgical internal-fixation for femoral neck fractures of Pauwells-II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Seventeen sets of CT scanned femora were imported onto Mimics extracting 3D models; these specimens were transferred to Geomagic Studio for a simulative osteotomy and kyrtograph; then, they underwent UG to fit simulative solid models; three sorts of internal fixators were expressed virtually by Pro-Engineer. Processed by Hypermesh, all compartments were assembled onto three systems actually as “Dynamic hip screw (DHS), 3LS and DHS+LS”. Eventually, numerical models of Finite Elemental Analysis (FEA) were exported to AnSys for solution. Three models for fixtures of Pauwells-II were established, validated and analyzed with the following findings: Femoral-shaft stress for [Formula: see text](3LS) is the least; Internal-fixator stress (MPa) for [Formula: see text]; Integral stress (MPa) for [Formula: see text]; displacement of femoral head (mm) for a[Formula: see text](DHS+LS) = 0.735; displacement of femoral shaft (mm) for [Formula: see text]; and displacement of fixators for [Formula: see text]. Mechanical comparisons for other femoral parks are insignificantly different, and these data can be abstracted as follows: the stress of 3LS-system was checked to be the least, and an interfragmentary displacement of DHS+LS assemblages was assessed to be the least”. A 3LS-system should be recommended to clinically optimize a Pauwells-II facture; if treated by this therapeutic fixation, breakage of fixators or secondary fracture is supposed to occur rarely. The strength of this study is that it was performed by a computer-aided simulation, allowing for design of a preoperative strategy that could provide acute correction and decrease procedure time, without harming to humans or animals.


2007 ◽  
Vol 129 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Lapo F. Mori ◽  
Neil Krishnan ◽  
Jian Cao ◽  
Horacio D. Espinosa

In this paper, the results of experiments conducted to investigate the friction coefficient existing at a brass-steel interface are presented. The research discussed here is the second of a two-part study on the size effects in friction conditions that exist during microextrusion. In the regime of dimensions of the order of a few hundred microns, these size effects tend to play a significant role in affecting the characteristics of microforming processes. Experimental results presented in the previous companion paper have already shown that the friction conditions obtained from comparisons of experimental results and numerical models show a size effect related to the overall dimensions of the extruded part, assuming material response is homogeneous. Another interesting observation was made when extrusion experiments were performed to produce submillimeter sized pins. It was noted that pins fabricated from large grain-size material (211μm) showed a tendency to curve, whereas those fabricated from billets having a small grain size (32μm), did not show this tendency. In order to further investigate these phenomena, it was necessary to segregate the individual influences of material response and interfacial behavior on the microextrusion process, and therefore, a series of frictional experiments was conducted using a stored-energy Kolsky bar. The advantage of the Kolsky bar method is that it provides a direct measurement of the existing interfacial conditions and does not depend on material deformation behavior like other methods to measure friction. The method also provides both static and dynamic coefficients of friction, and these values could prove relevant for microextrusion tests performed at high strain rates. Tests were conducted using brass samples of a small grain size (32μm) and a large grain size (211μm) at low contact pressure (22MPa) and high contact pressure (250MPa) to see whether there was any change in the friction conditions due to these parameters. Another parameter that was varied was the area of contact. Static and dynamic coefficients of friction are reported for all the cases. The main conclusion of these experiments was that the friction coefficient did not show any significant dependence on the material grain size, interface pressure, or area of contact.


2021 ◽  
Author(s):  
Ruizi Zhang ◽  
Ian Frigaard

Abstract Many numerical studies have been conducted regarding laminar miscible displacement flow in narrow, vertical, eccentric annuli. For the next decade it is likely that primary cementing flows on the scale of the well will continue to be simulated predominantly with 2D gap-averaged (2DGA) models. However, 3D simulations are less common due to the computational cost. The comparison between 2D and 3D models needs further attention, to understand the main discrepancies and thus help to understand primary cementing flows better. In this paper, comparisons of 3D against 2DGA model results show a range of interesting different phenomena, e.g. static layers, dispersive spikes, and instabilities. The predictions of the 2DGA model are the same as the 3D results to a degree. In particular, they are consistent with each other regarding the evolving process, interface shape, etc. However, the main difference with the 2DGA concentration arises from dispersion on the scale of the annular gap. From the recent research of Renteria and Frigaard (J. Fluid Mech., vol. 905, 2020) [1], a variety of dispersive effects are the main discrepancy between experiments and 2DGA results as well. We give representative examples of these flows in surface casing geometries and suggest methods for improvement of the 2DGA model.


Sign in / Sign up

Export Citation Format

Share Document