Tracing plant water fluxes in ecosystems by stable isotopes along the soil-plant and plant-atmosphere interfaces

Author(s):  
Christiane Werner

<p>Terrestrial vegetation is a main driver of ecosystem water fluxes, as plants mediate the water fluxes within the soil-vegetation-atmosphere continuum. Stable isotopologues of water are efficient tracer to follow the water transfer in soils, uptake by plants, transport in stems and release into the atmosphere through stomata. The development of in-situ methods coupled to isotope spectroscopy does now enable real-time in-situ water vapour isotopologue measurements revealing high spatial and temporal dynamics, such as adaptations in root water uptake depths (within hours to days) or the impact of transpirational fluxes on atmospheric moisture.</p><p>Examples will be given how isotopes can be used to inform the complex interplay between plant ecophysiological adaptations and hydrological processes. For example, root water uptake is not solely driven by soil water availability but has to be understood in the context of species-specific regulation of active zones in their rooting system determining the conductivity between soil and roots regulating uptake depths. The latter has also to be evaluated in context of the nutrient demand and the spatial nutrient availability. Similarly, plant water transport and losses are a fined tuned interplay between species-specific structural and functional adaptations and atmospheric processes.</p><p>Finally, first data of a large-scale ecosystem labelling experiment at the Biosphere 2 tropical rainforest of the B2 Wald, Atmosphere, and Live Dynamics (B2WALD) will be presented.</p>

2020 ◽  
Author(s):  
Stefan Seeger ◽  
Michael Rinderer ◽  
Markus Weiler

<p>In the face of global climate change, a well-informed knowledge of plant physiologic key parameters is essential to predict the behavior of ecosystems in a changing environment. Many of these parameters may be determined with lab or pot experiments, but it could prove problematic to transfer results obtained in a such experiments with small trees to fully grown trees. Therefore, new approaches to determine relevant parameters for mature trees are still required. Regarding plant water uptake, parameters related to fine root distribution (maximum depth, depth distribution and rhizosphere radius) and parameters describing the physiological limits of root water uptake are important, but usually hard or costly to assess for fully grown trees.  In-situ isotope probes (Volkmann et al. 2016a  & 2016b) are a promising recent development that offer new possibilities for the investigation of plant water uptake and associated physiological parameters.</p><p>In this study we used in-situ stable water isotope probes in soil (six depths from 10 to 100 cm) and in tree xylem of mature (140 years) European beech trees (three heights between 0 and 8 m). With those probes, we monitored soil and xylem isotope signatures after an isotopically labeled (Deutrium-Excess = 100 ‰) irrigation pulse equivalent to 150 mm of precipitation and foursubsequent natural precipitation events over a period of twelve weeks with a high temporal resolution (six or more measurements per probe per day). Those measurements were complemented with measurements of soil moisture and sap flow dynamics. We interpolated our measured soil isotope and soil moisture data in order to obtain spatially and temporally continuous data for those soil parameters. Then we used this data as an input to the Feddes-Jarvis plant water uptake model, in order to predict the isotopic signature of plant water uptake at daily time steps. With the help of our observed isotopic signatures, we were able to directly constrain the critical water potential parameter of the Feddes model as well as the underlying fine root distribution. Furthermore, the observed dampening of the breakthrough curve of our Deuterium-labeling pulse allowed us to infer information on the rhizosphere  radius and water transport velocities in the fine roots and stem between the points of root water uptake and the eight meter stem height.</p><p>With our field experiment we showed that in-situ isotope measurements in soil profiles and in tree xylem sap can help to constrain plant water uptake modelling parameters. Future experiments might use this approach to scrutinize lab-scale derived hypothesizes regarding tree water uptake and to investigate the temporal and spatial dynamics of root water uptake in the field.</p><p> </p><p><em>Volkmann, T. H., Haberer, K., Gessler, A., & Weiler, M. (2016a). High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytologist, 210(3), 839-849. </em></p><p><em>Volkmann, T. H., Kühnhammer, K., Herbstritt, B., Gessler, A., & Weiler, M. (2016b). A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, cell & environment, 39(9), 2055-2063. </em></p><p><em>Jarvis, N. J. (1989). A simple empirical model of root water uptake. Journal of Hydrology, 107(1-4), 57-72. </em></p>


2019 ◽  
Author(s):  
Matthias Beyer ◽  
Maren Dubbert

Abstract. The number of ecohydrological studies involving water stable isotopes has been increasing steadily due to technological (i.e. field deployable laser spectroscopy and cheaper instruments) and methodological (i.e. tracer approaches or improvements in root water uptake models) advances in recent years. This enables researchers from a broad scientific background to incorporate water isotope-based methods into their studies. Several isotope effects are currently not fully understood, but essential when investigating root water uptake depths of vegetation and disentangle isotope processes at the soil-vegetation-atmosphere continuum. In particular different viewpoints exist on i) extraction methods for soil and plant water and methodological artefacts potentially introduced by them; ii) the pools of water measured with those methods and iii) spatiotemporal issues related with water stable isotope research. In situ methods have been proposed as an innovative and necessary way to address these issues and are required in order to disentangle isotope effects and take them into account when studying root water uptake depths of plants and for studying soil-plant-atmosphere interaction based on water stable isotopes. Herein, we review the current status of in situ measurements of water stable isotopes in soils and plants, point out current issues and highlight potential for future research. Moreover, we put a strong focus and incorporate practical aspects into this review. Finally, we propose an integrated methodology for measuring both soil and plant water isotopes when carrying out studies at the soil-vegetation-atmosphere interface. For all in situ methods, extreme care needs to be taken particularly during set-up in order to obtain reliable data. In situ methods for soils are well established. For transpiration, reliable methods also exist but are not common in ecohydrological field studies due to the required effort. Little attention has been payed to in situ xylem water isotope measurements. Research needs to focus on improving and further developing those methods. There is a need for a consistent and combined (soils and plants) methodology for ecohydrological studies. Such systems should be designed and adapted to the environment to be studied. We further conclude that many studies currently might not rely on in situ methods extensively because of the technical difficulty. Hence, future research needs to aim on developing a simplified approach that provides a reasonable trade-off between practicability and precision/accuracy.


Author(s):  
Natalie Orlowski ◽  
Stefan Seeger ◽  
David Mennekes ◽  
Hugo de Boer ◽  
Markus Weiler ◽  
...  

<p>Water isotope tracing techniques in combination with laser-based isotopic analyses have advanced our understanding of plant water uptake patterns providing opportunities to carry out observational studies at high spatio-temporal resolution. Studying these highly dynamic processes at the interface between soils and trees can be challenging under natural field conditions, as available water resources are difficult to control. On the other hand, the results of small pot experiments in the greenhouse using tree seedlings are often difficult to transfer to mature trees. Here, we setup a controlled outdoor large pot experiment with three different, 4-6 meter high and 20 year old trees: <em>Pinus pinea, Alnus <span>spaethii</span> and Quercus suber.</em> We took advantage of stable water isotope techniques by tracing plant water uptake from the root zone through the xylem via isotopically labelled irrigation water. We combined ecohydrological observations of sapflow, photosynthesis, soil moisture and temperature and soil matrix potential with high resolution measurements of water stable isotopes in soils and trees to understand how soil water is used by different tree species. We monitored the isotopic composition of soil and xylem water in high temporal resolution with in-situ isotope probes installed at different depths in the soil and different heights in the tree stem. We further compared the water isotopic composition of our in-situ monitoring setup with destructive sampling methods for soil and plant water (vapour equilibration method and cryogenic extraction).</p><p>Our results from the continuous monitoring showed a distinct difference in the xylem sap isotopic signature between<em> Quercus</em> on the one hand and <em>Alnus</em> and <em>Pinus</em> on the other hand. This is likely due to different water use strategies of these tree species. The tree xylem isotopic signature of <em>Alnus</em> and <em>Pinus</em> responded to the isotopic label within one day and six days at 15 cm and 150 cm stem height, respectively. The peak isotopic signature in the tree xylem due to the label application was similar to the isotopic signature of the soil in 30 cm (for <em>Alnus</em>) and 15 cm (for <em>Pinus</em>). <em>Quercus</em> showed a delayed and much slower increase in the xylem isotopic signature in response to the label and the highest values were significantly lower than the corresponding soil isotopic signatures. Our methodological comparison showed that the isotopic signature of the destructive samples (from both methods) had a larger spread and this spread tended to become larger with subsequent labeling. Destructive soil samples showed a wider isotopic variation than destructive xylem samples. The in-situ isotope measurements in comparison showed a relative constant small to medium spread for soil and xylem isotopic measurements. Our in-situ isotope probes therefore seem to be a potential alternative or supplement to destructive sampling offering much higher temporal resolution. The continuation of the labeling experiments in 2020 will allow us to further study tree-species specific water uptake strategies, which will become important under future climatic conditions in terms of development of adaptation strategies for sustainable forest management.</p>


2020 ◽  
Vol 24 (9) ◽  
pp. 4413-4440
Author(s):  
Matthias Beyer ◽  
Kathrin Kühnhammer ◽  
Maren Dubbert

Abstract. The number of ecohydrological studies involving water stable isotope measurements has been increasing steadily due to technological (e.g., field-deployable laser spectroscopy and cheaper instruments) and methodological (i.e., tracer approaches or improvements in root water uptake models) advances in recent years. This enables researchers from a broad scientific background to incorporate water-isotope-based methods into their studies. Several isotope effects are currently not fully understood but might be essential when investigating root water uptake depths of vegetation and separating isotope processes in the soil–vegetation–atmosphere continuum. Different viewpoints exist on (i) extraction methods for soil and plant water and methodological artifacts potentially introduced by them, (ii) the pools of water (mobile vs. immobile) measured with those methods, and (iii) spatial variability and temporal dynamics of the water isotope composition of different compartments in terrestrial ecosystems. In situ methods have been proposed as an innovative and necessary way to address these issues and are required in order to disentangle isotope effects and take them into account when studying root water uptake depths of plants and for studying soil–plant–atmosphere interaction based on water stable isotopes. Herein, we review the current status of in situ measurements of water stable isotopes in soils and plants, point out current issues and highlight the potential for future research. Moreover, we put a strong focus and incorporate practical aspects into this review in order to provide a guideline for researchers with limited previous experience with in situ methods. We also include a section on opportunities for incorporating data obtained with described in situ methods into existing isotope-enabled ecohydrological models and provide examples illustrating potential benefits of doing so. Finally, we propose an integrated methodology for measuring both soil and plant water isotopes in situ when carrying out studies at the soil–vegetation–atmosphere continuum. Several authors have shown that reliable data can be generated in the field using in situ methods for measuring the soil water isotope composition. For transpiration, reliable methods also exist but are not common in ecohydrological field studies due to the required effort. Little attention has been paid to in situ xylem water isotope measurements. Research needs to focus on improving and further developing those methods. There is a need for a consistent and combined (soils and plants) methodology for ecohydrological studies. Such systems should be designed and adapted to the environment to be studied. We further conclude that many studies currently might not rely on in situ methods extensively because of the technical difficulty and existing methodological uncertainties. Future research needs to aim on developing a simplified approach that provides a reasonable trade-off between practicability and precision and accuracy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2020 ◽  
Author(s):  
Brett R. Bayles ◽  
Michaela F George ◽  
Haylea Hannah ◽  
Patti Culross ◽  
Rochelle R. Ereman ◽  
...  

Background: The first shelter-in-place (SIP) order in the United States was issued across six counties in the San Francisco Bay Area to reduce the impact of COVID-19 on critical care resources. We sought to assess the impact of this large-scale intervention on emergency departments (ED) in Marin County, California. Methods: We conducted a retrospective descriptive and trend analysis of all ED visits in Marin County, California from January 1, 2018 to May 4, 2020 to quantify the temporal dynamics of ED utilization before and after the March 17, 2020 SIP order. Results: The average number of ED visits per day decreased by 52.3% following the SIP order compared to corresponding time periods in 2018 and 2019. Both respiratory and non-respiratory visits declined, but this negative trend was most pronounced for non-respiratory admissions. Conclusions: The first SIP order to be issued in the United States in response to COVID-19 was associated with a significant reduction in ED utilization in Marin County.


2019 ◽  
Vol 147 (7) ◽  
pp. 2433-2449
Author(s):  
Laura C. Slivinski ◽  
Gilbert P. Compo ◽  
Jeffrey S. Whitaker ◽  
Prashant D. Sardeshmukh ◽  
Jih-Wang A. Wang ◽  
...  

Abstract Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.


2014 ◽  
Vol 996 ◽  
pp. 417-423 ◽  
Author(s):  
Arne Kromm ◽  
Thomas Kannengiesser

Results obtained from laboratory tests mostly need to be verified under fabrication conditions in order to incorporate design specifics (joint configuration and restraint), which effect the residual stress state considerably. For this purpose, multi-pass sub merged arc welding was performed in a special large-scale testing facility. The impact of varying interpass temperatures could be proven in-situ by means of a pronounced stress accumulation during welding and subsequent heat treatment accompanied by stress determination using X-ray diffraction.


2020 ◽  
Vol 12 (3) ◽  
pp. 570 ◽  
Author(s):  
Gerard Portal ◽  
Thomas Jagdhuber ◽  
Mercè Vall-llossera ◽  
Adriano Camps ◽  
Miriam Pablos ◽  
...  

In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth’s surface soil moisture (SSM): the ESA’s Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA’s Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth’s surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30–40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active–passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation.


Sign in / Sign up

Export Citation Format

Share Document