Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean

Author(s):  
Jostein Bakke ◽  
Fabien Arnaud ◽  
Philip Deline ◽  
Charline Guiguet-Covex ◽  
Henriette Linge ◽  
...  

<p>The Southern Hemisphere`s westerly winds play a critical role in regulating Earth`s climate by shielding Antarctica from low-latitude heat, driving global ocean circulation and regulate the uptake of CO2 in the Southern Ocean. Both strength and position of this globally significant atmospheric pattern are rapidly shifting in the face of ongoing global warming. A string of recent studies links these developments to dramatic coupled changes in temperature, precipitation, sea-ice coverage and glacier extent that unfold across the Southern Ocean region. Critically, a lack of baseline information restricts our ability to understand the causes and patterns of these shifts and represent them robustly in the future projections that underpin climate policies. To help do so, we utilize the sensitivity of glaciers to atmospheric climate change and the potential of glacier-fed lake sediments to record this signal through time. For this purpose, we integrate emerging sedimentological, geochemical and glacier modelling tools in a new method framework to reconstruct changes in glacier extent, temperature and precipitation on human-relevant timescales. To do so, we rely on a number of novel sedimentological and geochemical approaches. These include biomarker-based temperature reconstructions, exposure dating of moraines and the use emerging non-destructive scanning techniques (e.g. Computed Tomography – CT) to fingerprint depositional pathways. Our study area in this cross-disciplinary project is the poorly investigated sub-Antarctic Kerguelen Archipelago, well-situated in the core southern westerly wind belt. During an extensive 2019 field campaign, we collected 130 meters of sediment cores from six lakes, 110 rock samples for exposure dating and numerous catchment samples. </p>

1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


2019 ◽  
Vol 117 (2) ◽  
pp. 889-894
Author(s):  
Torben Struve ◽  
David J. Wilson ◽  
Tina van de Flierdt ◽  
Naomi Pratt ◽  
Kirsty C. Crocket

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000–6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.


The Holocene ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 1439-1452 ◽  
Author(s):  
José M García-Ruiz ◽  
David Palacios ◽  
Nuria de Andrés ◽  
Blas L Valero-Garcés ◽  
Juan I López-Moreno ◽  
...  

The Marboré Cirque, which is located in the southern Central Pyrenees on the north face of the Monte Perdido Peak (42°40′0″N; 0.5°0″W; 3355 m), contains a wide variety of Holocene glacial and periglacial deposits, and those from the ‘Little Ice Age’ (‘LIA’) are particularly well developed. Based on geomorphological mapping, cosmogenic exposure dating and previous studies of lacustrine sediment cores, the different deposits were dated and a sequence of geomorphological and paleoenvironmental events was established as follows: (1) The Marboré Cirque was at least partially deglaciated before 12.7 kyr BP. (2) Some ice masses are likely to have persisted in the Early Holocene, although their moraines were destroyed by the advance of glaciers during the Mid Holocene and ‘LIA’. (3) A glacial expansion occurred during the Mid Holocene (5.1 ± 0.1 kyr), represented by a large push moraine that enclosed a unique ice mass at the foot of the Monte Perdido Massif. (4) A melting phase occurred at approximately 3.4 ± 0.2 and 2.5 ± 0.1 kyr (Bronze/Iron Ages) after one of the most important glacial advances of the Neoglacial period. (5) Another glacial expansion occurred during the Dark Age Cold Period (1.4–1.2 kyr), followed by a melting period during the Medieval Climate Anomaly. (6) The ‘LIA’ represented a clear stage of glacial expansion within the Marboré Cirque. Two different pulses of glaciation were detected, separated by a short retraction. The first pulse occurred most likely during the late 17th century or early 18th century (Maunder Minimum), whereas the second occurred between 1790 and ad 1830 (Dalton Minimum). A strong deglaciation process has affected the Marboré Cirque glaciers since the middle of the 19th century. (7) A large rock avalanche occurred during the Mid Holocene, leaving a chaotic deposit that was previously considered to be a Late Glacial moraine.


2008 ◽  
Vol 4 (4) ◽  
pp. 333-344 ◽  
Author(s):  
A. J. Dickson ◽  
M. J. Leng ◽  
M. A. Maslin

Abstract. A detailed record of benthic foraminifera carbon isotopes from the intermediate-depth South East Atlantic margin shows little glacial-interglacial variability between MIS-12 to MIS-10, suggesting that Northern Atlantic deepwaters consistently penetrated to at least 30° S. Millennial-scale increases in either the mass or flux of northern-sourced deepwaters over the core site occurred alongside reductions in Lower North Atlantic Deep Water recorded in North Atlantic sediment cores and show that the lower and intermediate limb of the Atlantic deepwater convective cell oscillated in anti-phase during previous glacial periods. In addition, a 500 yr resolution record of the Cape Basin intermediate-deep δ13C gradient shows that a reduction in deep Southern Ocean ventilation at the end of MIS-11 was consistent with a modelled CO2 drawdown of ~21–30 ppm. Further increases in the Southern Ocean chemical divide during the transition into MIS-10 were completed before minimum CO2 levels were reached, suggesting that other mechanisms such as alkalinity changes were responsible for the remaining ~45 ppm drawdown.


1991 ◽  
Vol 35 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Minze Stuiver ◽  
Thomas F. Braziunas ◽  
Bernd Becker ◽  
Bernd Kromer

AbstractLate-glacial and Holocene 14C/12C ratios of atmospheric CO2 vary in magnitude from a few per mil for annual/decadal pertubations to more than 10% for events lasting millennia. A data set illuminating 10- to 104-yr variability refines our understanding of oceanic (climatic) versus geomagnetic or solar forcing of atmospheric 14C/12C ratios. Most of the variance in the Holocene atmospheric 14C/12C record can be attributed to the geomagnetic (millennia time scale) and solar (century time scale) influence on the flux of primary cosmic rays entering the atmosphere. Attributing the observed atmospheric 14C/12C changes to climate alone leads to ocean circulation and/or global wind speed changes incompatible with proxy records. Climate-(ocean-)related 14C redistribution between carbon reservoirs, while evidently playing a minor role during the Holocene, may have perturbed atmospheric 14C/12C ratios measurably during the late-glacial Younger Dryas event. First-order corrections to the radiocarbon time scale (12,000–30,000 14C yr B.P.) are calculated from adjusted lake-sediment and tree-ring records and from geomagnetically defined model 14C histories. Paleosunspot numbers (100–9700 cal yr B.P.) are derived from the relationship of model 14C production rates to sunspot observations. The spectral interpretation of the 14C/12C atmospheric record favors higher than average solar activity levels for the next century. Minimal evidence was found for a sun-weather relationship.


2008 ◽  
Vol 4 (3) ◽  
pp. 667-695 ◽  
Author(s):  
A. J. Dickson ◽  
M. J. Leng ◽  
M. A. Maslin

Abstract. A detailed record of benthic foraminifera carbon isotopes from the South East Atlantic margin shows little glacial-interglacial variability between MIS-12 to MIS-10, suggesting that Glacial North Atlantic Intermediate Water (GNAIW) consistently penetrated to at least 30° S. Millennial-scale increases in either the mass or flux of GNAIW over the core site occur alongside reductions in Lower North Atlantic Deep Water recorded in North Atlantic sediment cores and show that the lower and intermediate limb of the Atlantic deepwater convective cell oscillated in anti-phase during previous glacial periods. In addition, a 500 yr resolution record of the Cape Basin intermediate-deep δ13C gradient shows that a reduction in deep Southern Ocean ventilation at the end of MIS-11 was consistent with a modelled CO2 drawdown of ~21–30 ppm. Further increases in the Southern Ocean chemical divide during the transition into MIS-10 were completed before minimum CO2 levels were reached, suggesting that other mechanisms such as alkalinity changes were responsible for the remaining ~45 ppm drawdown.


2017 ◽  
Vol 22 ◽  
pp. 49-61
Author(s):  
Roger D. Flood ◽  
Roberto A. Violante ◽  
Thomas Gorgas ◽  
Ernesto Schwarz ◽  
Jens Grützner ◽  
...  

Abstract. The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic–Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8–11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


Sign in / Sign up

Export Citation Format

Share Document