scholarly journals Mid-depth South Atlantic ocean circulation and chemical stratification during MIS-10 to 12: implications for atmospheric CO<sub>2</sub>

2008 ◽  
Vol 4 (3) ◽  
pp. 667-695 ◽  
Author(s):  
A. J. Dickson ◽  
M. J. Leng ◽  
M. A. Maslin

Abstract. A detailed record of benthic foraminifera carbon isotopes from the South East Atlantic margin shows little glacial-interglacial variability between MIS-12 to MIS-10, suggesting that Glacial North Atlantic Intermediate Water (GNAIW) consistently penetrated to at least 30° S. Millennial-scale increases in either the mass or flux of GNAIW over the core site occur alongside reductions in Lower North Atlantic Deep Water recorded in North Atlantic sediment cores and show that the lower and intermediate limb of the Atlantic deepwater convective cell oscillated in anti-phase during previous glacial periods. In addition, a 500 yr resolution record of the Cape Basin intermediate-deep δ13C gradient shows that a reduction in deep Southern Ocean ventilation at the end of MIS-11 was consistent with a modelled CO2 drawdown of ~21–30 ppm. Further increases in the Southern Ocean chemical divide during the transition into MIS-10 were completed before minimum CO2 levels were reached, suggesting that other mechanisms such as alkalinity changes were responsible for the remaining ~45 ppm drawdown.

2008 ◽  
Vol 4 (4) ◽  
pp. 333-344 ◽  
Author(s):  
A. J. Dickson ◽  
M. J. Leng ◽  
M. A. Maslin

Abstract. A detailed record of benthic foraminifera carbon isotopes from the intermediate-depth South East Atlantic margin shows little glacial-interglacial variability between MIS-12 to MIS-10, suggesting that Northern Atlantic deepwaters consistently penetrated to at least 30° S. Millennial-scale increases in either the mass or flux of northern-sourced deepwaters over the core site occurred alongside reductions in Lower North Atlantic Deep Water recorded in North Atlantic sediment cores and show that the lower and intermediate limb of the Atlantic deepwater convective cell oscillated in anti-phase during previous glacial periods. In addition, a 500 yr resolution record of the Cape Basin intermediate-deep δ13C gradient shows that a reduction in deep Southern Ocean ventilation at the end of MIS-11 was consistent with a modelled CO2 drawdown of ~21–30 ppm. Further increases in the Southern Ocean chemical divide during the transition into MIS-10 were completed before minimum CO2 levels were reached, suggesting that other mechanisms such as alkalinity changes were responsible for the remaining ~45 ppm drawdown.


2018 ◽  
Vol 14 (9) ◽  
pp. 1315-1330 ◽  
Author(s):  
Claire Waelbroeck ◽  
Sylvain Pichat ◽  
Evelyn Böhm ◽  
Bryan C. Lougheed ◽  
Davide Faranda ◽  
...  

Abstract. Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e., Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti ∕ Ca). New sedimentary Pa ∕ Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa ∕ Th and ln(Ti ∕ Ca) signals. We show that decreased water mass transport between a depth of ∼1300 and 2300 m in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 400 yr at Dansgaard–Oeschger (D–O) frequencies, and by 280 to 980 yr at Heinrich-like frequencies. We suggest that the large lead of ocean circulation changes with respect to changes in tropical South American precipitation at Heinrich-like frequencies is related to the effect of a positive feedback involving iceberg discharges in the North Atlantic. In contrast, the absence of widespread ice rafted detrital layers in North Atlantic cores during D–O stadials supports the hypothesis that a feedback such as this was not triggered in the case of D–O stadials, with circulation slowdowns and subsequent changes remaining more limited during D–O stadials than Heinrich stadials.


2011 ◽  
Vol 7 (3) ◽  
pp. 771-800 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1213-1229
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Roberto Violante ◽  
Paula Franco-Fraguas ◽  
Leticia Burone ◽  
Cesar Barbedo Rocha ◽  
...  

Abstract. In this study, we interpret the role played by ocean circulation in sediment distribution on the southwestern Atlantic margin using radiogenic Nd and Pb isotopes. The latitudinal trends for Pb and Nd isotopes reflect the different current systems acting on the margin. The utilization of the sediment fingerprinting method allowed us to associate the isotopic signatures with the main oceanographic features in the area. We recognized differences between Nd and Pb sources to the Argentinean shelf (carried by the flow of Subantarctic Shelf Water) and slopes (transported by deeper flows). Sediments from Antarctica extend up to the Uruguayan margin, carried by the Upper and Lower Circumpolar Deep Water. Our data confirm that, for shelf and intermediate areas (the upper 1200 m), the transfer of sediments from the Argentinean margin to the north of 35∘ S is limited by the Subtropical Shelf Front and the basin-wide recirculated Antarctic Intermediate Water. On the southern Brazilian inner and middle shelf, it is possible to recognize the northward influence of the Río de la Plata sediments carried by the Plata Plume Water. Another flow responsible for sediment transport and deposition on the outer shelf and slope is the southward flow of the Brazil Current. Finally, we propose that the Brazil–Malvinas Confluence and the Santos Bifurcation act as boundaries of geochemical provinces in the area. A conceptual model of sediment sources and transport is provided for the southwestern Atlantic margin.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb3807
Author(s):  
Tao Li ◽  
Laura F. Robinson ◽  
Tianyu Chen ◽  
Xingchen T. Wang ◽  
Andrea Burke ◽  
...  

The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-ventilated waters in the deep Southern Ocean occurred at 16.3 and 12.8 ka ago. Contemporaneous atmospheric carbon records indicate that these Southern Ocean ventilation events are also important in releasing respired carbon from the deep ocean to the atmosphere. Our results thus highlight two distinct modes of Southern Ocean circulation and biogeochemistry associated with centennial-scale atmospheric CO2 jumps during the last deglaciation.


2020 ◽  
Author(s):  
Jostein Bakke ◽  
Fabien Arnaud ◽  
Philip Deline ◽  
Charline Guiguet-Covex ◽  
Henriette Linge ◽  
...  

&lt;p&gt;The Southern Hemisphere`s westerly winds play a critical role in regulating Earth`s climate by shielding Antarctica from low-latitude heat, driving global ocean circulation and regulate the uptake of CO2 in the Southern Ocean. Both strength and position of this globally significant atmospheric pattern are rapidly shifting in the face of ongoing global warming. A string of recent studies links these developments to dramatic coupled changes in temperature, precipitation, sea-ice coverage and glacier extent that unfold across the Southern Ocean region. Critically, a lack of baseline information restricts our ability to understand the causes and patterns of these shifts and represent them robustly in the future projections that underpin climate policies. To help do so, we utilize the sensitivity of glaciers to atmospheric climate change and the potential of glacier-fed lake sediments to record this signal through time. For this purpose, we integrate emerging sedimentological, geochemical and glacier modelling tools in a new method framework to reconstruct changes in glacier extent, temperature and precipitation on human-relevant timescales. To do so, we rely on a number of novel sedimentological and geochemical approaches. These include biomarker-based temperature reconstructions, exposure dating of moraines and the use emerging non-destructive scanning techniques (e.g. Computed Tomography &amp;#8211; CT) to fingerprint depositional pathways. Our study area in this cross-disciplinary project is the poorly investigated sub-Antarctic Kerguelen Archipelago, well-situated in the core southern westerly wind belt. During an extensive 2019 field campaign, we collected 130 meters of sediment cores from six lakes, 110 rock samples for exposure dating and numerous catchment samples.&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Andrea Burke ◽  
Rosanna Greenop ◽  
James Rae ◽  
Rhian Rees-Owen ◽  
Paula Reimer ◽  
...  

&lt;p&gt;Paleoclimate records from the North Atlantic show some of the most iconic signals of abrupt climate change during the ice ages. Here we use radiocarbon as a tracer of ocean circulation and air-sea gas exchange to investigate potential mechanisms for the abrupt climate changes seen in the North Atlantic over the last deglaciation. We have created a stack of North Atlantic surface radiocarbon reservoir ages over the past 20,000 years, using new synchronized age models from thirteen sediment cores refined with thorium normalization between tie-points. This stack shows consistent and large reservoir age increases of more than 1000 years from the LGM into HS1, dropping abruptly back to approximately modern reservoir ages before the onset of the Bolling-Allerod. We use the intermediate complexity earth system model cGENIE to investigate the potential drivers of these reservoir age changes. We find that sea ice, circulation and CO&lt;sub&gt;2&lt;/sub&gt; all play important roles in setting the reservoir age. We use these coherently dated records to revisit the sequence and timing of climatic events during HS1 and the last deglaciation, and show that Laurentide Heinrich Events are a response to stadial conditions, rather than their root cause.&lt;/p&gt;


2012 ◽  
Vol 42 (1) ◽  
pp. 141-164 ◽  
Author(s):  
Patrick Haertel ◽  
Alexey Fedorov

Abstract Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study explores these ideas using a recently developed Lagrangian ocean model (LOM), which simulates ocean motions by computing trajectories of water parcels. A unique feature of the LOM is its capacity to model ocean circulations in the adiabatic limit, in which water parcels exactly conserve their densities when they are not in contact with the ocean surface. The authors take advantage of this property of the LOM and consider the circulation and stratification that develop in an ocean with a fully adiabatic interior (with both isopycnal and diapycnal diffusivities set to zero). The ocean basin in the study mimics that of the Atlantic Ocean and includes a circumpolar channel. The model is forced by zonal wind stress and a density restoring at the surface. Despite the idealized geometry, the relatively coarse model resolution, and the lack of atmospheric coupling, the nondiffusive ocean maintains a density structure and meridional overturning that are broadly in line with those observed in the Atlantic Ocean. These are generated by just a handful of key water pathways, including shallow tropical cells described by ventilated thermocline theory; a deep overturning cell in which sinking North Atlantic Deep Water eventually upwells in the Southern Ocean before returning northward as Antarctic Intermediate Water; a Deacon cell that results from a topographically steered and corkscrewing circumpolar current; and weakly overturning Antarctic Bottom Water, which is effectively ventilated only in the Southern Hemisphere. The main conclusion of this study is that the adiabatic limit for the ocean interior provides the leading-order solution for ocean overturning and density structure, with tracer diffusion contributing first-order perturbations. Comparing nondiffusive and diffusive experiments helps to quantify the changes in stratification and circulation that result from adding a moderate amount of tracer diffusion in the ocean model, and these include an increase in the amplitude of the deep meridional overturning cell of several Sverdrups, a 10%–20% increase in Northern Hemispheric northward heat transport, a stronger stratification just below the main thermocline, and a more realistic bottom overturning cell.


Geology ◽  
2013 ◽  
Vol 41 (6) ◽  
pp. 667-670 ◽  
Author(s):  
L.C. Skinner ◽  
A.E. Scrivner ◽  
D. Vance ◽  
S. Barker ◽  
S. Fallon ◽  
...  

2010 ◽  
Vol 23 (24) ◽  
pp. 6526-6541 ◽  
Author(s):  
Stephanie M. Downes ◽  
Nathaniel L. Bindoff ◽  
Stephen R. Rintoul

Abstract A multimodel comparison method is used to assess the sensitivity of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation to climate change. For the Intergovernmental Panel on Climate Change A2 emissions scenario (where atmospheric CO2 is 860 ppm at 2100), the models show cooling and freshening on density surfaces less than about 27.4 kg m−3, a pattern that has been observed in the late twentieth century. SAMW (defined by the low potential vorticity layer) and AAIW (defined by the salinity minimum layer) warm and freshen as they shift to lighter density classes. Heat and freshwater fluxes at the ocean surface dominate the projected buoyancy gain at outcrop regions of SAMW and AAIW, whereas the net increase in the Ekman flux of heat and freshwater contributes to a lesser extent. This buoyancy gain, combined with shoaling of the winter mixed layer, reduces the volume of SAMW subducted into the ocean interior by a mean of 8 Sv (12%), and the subduction of AAIW decreases by a mean of 14 Sv (23%; 1 Sv ≡ 106 m3 s−1). Decreases in the projected subduction of the key Southern Ocean upper-water masses imply a slow down in the Southern Ocean circulation in the future, driven by surface warming and freshening. A reduction in the subduction of intermediate waters implies a likely future decrease in the capacity of the Southern Ocean to sequester CO2.


Sign in / Sign up

Export Citation Format

Share Document