Investigate the softening properties of weak interlayers in slope failure process using nanoindentation test and simulation

Author(s):  
Jingjing Xu ◽  
Yufei Feng ◽  
Xuhai Tang

<p>This work proposed an available approach to analyze the property evolution of weak interlayers during immersion softening at micro and macro scales, which combining the advantages of nanoindentation tests and numerical modelling. The weak interlayers has significant impact on the failure process of natural slopes, however, their properties are difficult to be obtained using traditional triaxial compression tests. Because these weak interlayers are consist of clay and rock fragments which leads to the difficult to prepare intact samples. Additionally, the softening properties of these weak interlayers are strongly related to their fillings at micro scale. In this work, the weak interlayers is investigated using nano-scale micromechanical tests and upscaling methodologies, so only small rock fragments are required (see Fig.1). <br>In northwestern Hubei China, the mountains often developed several layers of weak interlayers with major lithology as shale which is sedimentary rock with low strength and dense clay particles. We investigated these shale fragments in weak interlayers, which is prone to decrease in strength induced by precipitation erosion. The Gaussian mixture model was used to analyze a large amount of data obtained by statistical grid nanoindentation method. Then the Mori-Tanaka scheme was used to homogenize the elastic properties of the samples and upscale the nanoindentation data to the macroscale. The hardness values which obtain by Berkovich and Cube corner indenter were able to assess the cohesion and friction angle of shale. Finally, these achieved parameters were applied in numerical model, in order to analyze the slope failure caused by the softening of weak interlayers (see Fig. 2).<br>The results show that: (1) the chlorite and muscovite minerals, which are major proportion of shale, soften or dissolve with the increasing saturation time. The fine mineral particles are gradually stripped from micro structure. As a result, at microscale the compact shale samples sale became loose. The strength of these shale samples are also decrease because water seeped through pores and micro cracks. (2) After water immersion, the friction angle is almost constant, while the elastic modulus and cohesion decrease significantly with increasing saturation time. (3) The shear strength decrease so that the shearing creep occurs along the weak interlayers surface, then bottom sliding surface is cut, which leads to landslide.</p>

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Zenon Szypcio

The strength of sand is usually characterized by the maximum value of the secant friction angle. The friction angle is a function of deformation mode, density, and stress level and is strongly correlated with dilatancy at failure. Most often, the friction angle is evaluated from results of conventional compression tests, and correlation between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions is a vital problem of soil mechanics. These correlations can be obtained from laboratory test results. The failure criteria for sand presented in literature also give the possibility of finding correlations between friction angles for different deformation modes. The general stress-dilatancy relationship obtained from the frictional state concept, with some additional assumptions, gives the possibility of finding theoretical relationships between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions. The theoretically obtained relationships presented in the paper are fully consistent with theoretical and experimental findings of soil mechanics.


2019 ◽  
Vol 56 (5) ◽  
pp. 649-661 ◽  
Author(s):  
Wengui Cao ◽  
Xin Tan ◽  
Chao Zhang ◽  
Min He

A constitutive model with capacity to simulate the full deformation and failure process for rocks considering initial compression and residual strength behaviors is discussed in this paper. The rock was assumed to consist of the initial voids portion and the solid skeleton portion. The full deformation model of rocks can be established by the consideration of the macroscopic deformation of rocks and the microscopic deformations of the two different portions based on the statistical damage theory. Comparisons between the experimental data from triaxial compression tests and calculated results show that the proposed constitutive model provided a good prediction of the full deformation and failure process, including the effects of initial void compression, stiffness degradation, strain hardening–softening, and residual strength.


2011 ◽  
Vol 382 ◽  
pp. 172-175
Author(s):  
Ren Wei Wu ◽  
Xing Qian Peng ◽  
Li Zhang

As the "Fujian earth-building" have been inscribed by UNESCO in 2008 as World Heritage Site, attentions of protection about the "Fujian earth-building" has getting more and more. This article takes samples of a rammed-earth wall from Yongding earth-buildings and determines the shear strength of the samples with different water content through triaxial compression tests. The influence on shear strength of water content of rammed-earth samples is analyzed. Test results show that the shear strength of rammed-earth has much to do with the water content of the soil, the greater the water content is,the smaller the shear strength is. With water content increasing, cohesion and internal friction angle of rammed-earth were decreases, and its changing trend is of marked characteristic of stage. When water contents of rammed-earth is under some value, its cohesion changes in small ranges; when water contents of rammed-earth is over the value, its cohesion decreases with water content increasing.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangfeng Lv ◽  
Hongyuan Zhou

The present paper is devoted to investigate the effects of waste polyester fiber fabric blocks on the strength and mechanical behavior of cemented sand. In the investigation, samples were prepared at four different percentages of waste polyester fiber fabric block content (0.0%, 0.5%, 1.0%, and 1.5% by weight of soil) and two different aspect ratios (2 : 1 and 3 : 1), and conventional triaxial compression tests were carried out after the curing period. The test results indicated that the addition of fibers increased peak and residual shear strengths of cemented sand and changed its brittle behavior to a more ductile one. As the fabric block content increased, the brittleness index and initial stiffness decreased, and the peak strain and internal friction angle increased. The optimal combination of the content and aspect ratio was determined to be 0.5% and 3 : 1. The integration of the fabric blocks with the cemented sand matrix was analyzed by using the scanning electron microscopy (SEM). It is found that the reinforcement effect is related to the bond strength and friction at the interface. The micromechanical properties of the fiber/matrix interface were influenced by the undulations between the fabric block components. In summary, this study presented a low-cost and environment-friendly method for reinforcing cement-stabilized sand.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Feng Zhu ◽  
Haotian Fan

Flaws existing in rock mass are one of the main factors resulting in the instability of rock mass. Epoxy resin is often used to reinforce fractured rock mass. However, few researches focused on mechanical properties of the specimens with a resin-infilled flaw under triaxial compression. Therefore, in this research, epoxy resin was selected as the grouting material, and triaxial compression tests were conducted on the rock-like specimens with a grout-infilled flaw having different geometries. This study draws some new conclusions. The high confining pressure suppresses the generation of tensile cracks, and the failure mode changes from tensile-shear failure to shear failure as the confining pressure increases. Grouting with epoxy resin leads to the improvement of peak strengths of the specimens under triaxial compression. The reinforcement effect of epoxy resin is better for the specimens having a large flaw length and those under a relatively low confining pressure. Grouting with epoxy resin reduces the internal friction angle of the samples but improves their cohesion. This research may provide some useful insights for understanding the mechanical behaviors of grouted rock masses.


1995 ◽  
Vol 32 (1) ◽  
pp. 78-88 ◽  
Author(s):  
B.E. Lingnau ◽  
J. Graham ◽  
N. Tanaka

Two models are proposed for describing the stress–strain behavior of sand–bentonite (buffer) mixtures at elevated temperatures: (1) isothermal pseudoelasticity and (2) isothermal elastic-plasticity. Data to support the models come from consolidated undrained triaxial compression tests performed on dense saturated buffer specimens at effective confining stresses up to 9.0 MPa and temperatures of 26°, 65°, and 100 °C. Measurements indicate that volumes decrease with increasing temperature if the tests are carried out under drained conditions. These trends can be modelled by a family of hardening lines in semilog compression space. Power law relationships are presented for undrained shear-strength envelopes that increase in size with an increase in temperature. The slopes of unload-reload lines, κ, in semilog compression space vary with temperature and can be related to systematic variation in the friction angle [Formula: see text]. The shear modulus G50 at 50% peak strength also depends on temperature. Several plotting techniques are used to show the existence of different state boundary surfaces for each test temperature. Key words : sand–bentonite, buffer, compression, shear strength, temperature, modelling.


2019 ◽  
Vol 2 (2) ◽  
pp. 116-126
Author(s):  
Tsuyoshi Nishi ◽  
Tadashi Hara ◽  
Hiroshi Nakazawa ◽  
Daisuke Suetsugu

In developing countries, gabions are widely used in several construction works, like road, river, countermeasures against slope failure and so on, because of their easy operation and low cost. In 2015 Nepal Gorkha Earthquake, a lot of retaining walls using gabions were not damaged against the strong earthquake because of their high flexibility. However, some deformation or declination were reported dpending on retaining wall types and ground conditions behind retaining walls. Therefore, in order to evaluate the earthquake resistance and residual deformations of retaining walls using gabions widely observed in Nepal, full-scale shake table tests and laboratory tests were conducted in previous studies. In this study, elemental simulations for determination of the analysis parameters based on the results of triaxial compression tests were carried out to check the validity of parameters. Then, a series of numerical analysis using proposed model was performed to reproduce the dynamic behaviors of full-scale shake table tests and evaluate the earthquake resistance of retaining wall using gabions. According to the results of these numerical analysis, it was confirmed that proposal model adequately could simulate the dynamic response of retaining walls in the full-scale shake table tests. and it was also cleared that the stepwise type retaining wall was superior to that of vertical type from the standpoint of earthquake stability against sliding and overturning.


2013 ◽  
Vol 353-356 ◽  
pp. 3251-3255 ◽  
Author(s):  
Xiao Liang Wang ◽  
Jia Chun Li

A numerical triaxial apparatus based on discrete element method is developed on the platform of Yade using Python script. A DEM model with rolling resistance contact considered is proposed for dense granular materials, which is then applied in triaxial compression test of Chende sand. Stress-strain response and volume-axial strain response of the DEM model agree well with that of experiments, with a good prediction of dilatancy angle. Degradation of granular materials duo to particle erosion is also investigated using triaxial compression tests. It is indicated that peak friction angle decreases with the remove of particles if strong force network of granular materials is destroyed.


2014 ◽  
Vol 634 ◽  
pp. 400-409
Author(s):  
Decio Lopes Cardoso ◽  
Talita Bassegio Kaminski ◽  
Francine Stelle Goldoni ◽  
Guilherme Irineu Venson ◽  
Camila Daiane Cancelier

The soil is a brittle material compared to other engineering materials such as steel, concrete and wood. The clayey nature of the soils of western Paraná causes them to be chemically reactive towards certain compounds, thereby improving their engineering properties, especially its mechanical strength. The study involved treating the typical soil of the region with two residues from industrial and human activities: rice husk ash (RHA) at doses 0; 2.5; 5; 7.5 and 10%; and burned sewage sludge (BSS) at doses 0; 5; 10; 15 to 20%; in the dry soil mass. The test samples were compacted in Mini-MCV equipment and broken in triaxial compression tests of consolidated undrained type, with confining pressures of 25; 50 and 100 kPa. The results showed that both the RHA change dramatically as the BSS which passes viscoelastic plastic-linear mechanical behavior of the composites. There was a significant increase in deviator tension and elasticity modulus, implying a gain in strength and stiffness of the composite compared to the natural soil. The most striking effect was observed in the RHA cohesion parameter; while the substantial effect of BSS was observed in the interparticles friction angle. These results suggest that RHA promoted the formation of new products filling the pore space of the composite, changing the clayey material in a nature of a continuum, while the BSS promoted a substantial aggregation of the particles, wherein the soil reinforcement transformed clay in a particulate material coarser grain size.


Sign in / Sign up

Export Citation Format

Share Document