SIMILE: An integrated monitoring system to understand, protect and manage sub-alpine lakes and their ecosystem

Author(s):  
Daniele Strigaro ◽  
Massimiliano Cannata ◽  
Fabio Lepori ◽  
Camilla Capelli ◽  
Michela Rogora ◽  
...  

<p>Lakes are an invaluable natural and economic resource for the insubric area, identified as the geographical area between the Po River (Lombardy, Italy) and the Monte Ceneri (Ticino, Switzerland). However, the increased anthropic activity and the climate change impacts are more and more threatening the health of these resources. In this context, universities and local administrations of the two regions, that share the trans-boundary lakes, joined their efforts and started a project, named SIMILE, to develop a system for the monitoring of lakes’ status providing updated and continuous information to support the management of the lakes. This project results from a pluriannual collaboration between the two countries, Switzerland and Italy, formalized in the CIPAIS commission (www.cipais.org). The aim is to introduce an innovative information system based on the combination of advanced automatic and continuous observation system, high resolution remote sensing data processing, citizen science and ecological and physical models. The project will capitalize the knowledge and experience of the resource managers with the creation of a Business Intelligence platform based on several interoperable geospatial Web services. The use of Open software and data will facilitate its adoption and will contribute to adequately keep the costs limited. The project, started few months ago is here presented and discussed.</p>

2021 ◽  
Author(s):  
Massimiliano Cannata ◽  
Daniele Strigaro ◽  
Fabio Lepori ◽  
Camilla Capelli ◽  
Mauro Veronesi ◽  
...  

<p>Lakes are a fundamental resource for the Insubric region (cross-border area that includes Ticino, North Lombardy and west Piedmont regions). Therefore the quality of their waters must be protected from the risks caused by the increased anthropogenic pressure and climate change. The main objective of the interreg project named SIMILE (https://interreg-italiasvizzera.eu/database_progetti/simile/) is to support decision making in the definition of management policies through an advanced information system based on data obtained from innovative monitoring systems (automatic, diversified, cost-effective and with high spatial and temporal resolution). The information system will also facilitate the identification of possible critical issues understanding the specific causes in a timely manner by using a common methodology across Switzerland and Italy: specifically for Lake Lugano, Lake Maggiore and Lake Como. The project aims at capitalizing and sharing the experiences of the project partners in the field of monitoring and management of water resources in the project area, in particular in the context of the CIPAIS programs (IT-CH international water protection commission). The information system, fully open, is designed to offer an effective, lowcost and sustainable solution that can be maintained by the project partners beyond the end of the project. From a scientific and technical point of view the project is based on the combination of advanced automatic and continuous observation systems, high resolution remote sensing data processing, citizen science and ecological and physical models. In this presentation we will discuss experiences gained from the deployment of cost-effective monitoring platform and open technologies used for data colection, archive, processing and dissemination.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.c525250b070069034701161/sdaolpUECMynit/12UGE&app=m&a=0&c=d3c1099d7d8e917b1c0312e6a43308ab&ct=x&pn=gepj.elif&d=1" alt=""></p>


2021 ◽  
Author(s):  
Robin Kohrs ◽  
 Lotte de Vugt ◽  
Thomas Zieher ◽  
Alice Crespi ◽  
Mattia Rossi ◽  
...  

<p>Shallow landslides in alpine environments can constitute a serious threat to the exposed elements. The spatio-temporal occurrence of such slope movements is controlled by a combination of predisposing factors (e.g. topography), preparatory factors (e.g. wet periods, snow melting) and landslide triggers (e.g. heavy precipitation events).  </p><p>For large study areas, landslide assessments frequently focus either on the static predisposing factors to estimate landslide susceptibility using data-driven procedures, or exclusively on the triggering events to derive empirical rainfall thresholds. For smaller areas, dynamic physical models can reasonably be parameterized to simultaneously account for static and dynamic landslide controls.  </p><p>The recently accepted Proslide project aims to develop and test methods with the potential to improve the predictability of landslides for the Italian province of South Tyrol. It is envisaged to account for a variety of innovative input data at multiple spatio-temporal scales. In this context, we seek to exploit remote sensing data for the spatio-temporal description of landslide controlling factors (e.g. precipitation RADAR; satellite soil moisture) and to develop models that allow an integration of heterogeneous model inputs using both, data-driven approaches (regional scale) and physically-based models (catchment scale). This contribution presents the core ideas and methodical framework behind the Proslide project and its very first results (e.g. relationships between landslide observations and gridded daily precipitation data at regional scale). </p>


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew D. Richardson ◽  
Koen Hufkens ◽  
Tom Milliman ◽  
Donald M. Aubrecht ◽  
Min Chen ◽  
...  

Abstract Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.


Author(s):  
Hana Listi Fitriana ◽  
Suwarsono Suwarsono ◽  
Eko Kusratmoko ◽  
Supriatna Supriatna

Forest and land fires in Indonesia take place almost every year, particularly in the dry season and in Sumatra and Kalimantan. Such fires damage the ecosystem, and lower the quality of life of the community, especially in health, social and economic terms. To establish the location of forest and land fires, it is necessary to identify and analyse burnt areas. Information on these is necessary to determine the environmental damage caused, the impact on the environment, the carbon emissions produced, and the rehabilitation process needed. Identification methods of burnt land was made both visually and digitally by utilising satellite remote sensing data technology. Such data were chosen because they can identify objects quickly and precisely. Landsat 8 image data have many advantages: they can be easily obtained, the archives are long and they are visible to thermal wavelengths. By using a combination of visible, infrared and thermal channels through the semi-automatic object-based image analysis (OBIA) approach, the study aims to identify burnt areas in the geographical area of Indonesia. The research concludes that the semi-automatic OBIA approach based on the red, infrared and thermal spectral bands is a reliable and fast method for identifying burnt areas in regions of Sumatra and Kalimantan.


2014 ◽  
Vol 644-650 ◽  
pp. 4360-4363
Author(s):  
Li Na Dong ◽  
Jing Tong ◽  
Chen Yang Wang

Airborne and space remote sensing system are all the important parts of the earth observation system, also being good supplements to each other. Airborne remote sensing has the advantages of being high resolution, good efficiency and flexibility, which makes itself an effective method to rapidly acquire high resolution remote sensing data. Particularly, the technologies of conducting low altitude remote sensing investigation by unmanned aerial vehicles are rapidly developed with a great progress achieved, so there is no doubt that it will plays an important role in the remote sensing geological investigation.


2021 ◽  
Vol 5 (2) ◽  
pp. 45-55
Author(s):  
Elhoucein Layati ◽  
Abdellah Ouigmane ◽  
Abdelghani Qadem ◽  
Mohamed El Ghachi

The present study is focused on analysis of rainfall in the Oued El-Abid watershed, which is characterized by an important potential in water supply of the Bin El Ouidane dam and the recharging groundwater of the plains downstream. The aim of the present research is to characterize the meteorological drought in the Oued El-Abid watershed, located in the Beni Mellal-Khenifra region (Central High Atlas, Morocco). The study focused on the analysis of the meteorological drought detection indices such as the deviation from the mean (DM), the rainfall index (RI) and the standardized precipitation index (SPI) based on annual precipitation for the three stations (Tilouguit, Ait Ouchen and Tizi N'Isli) generally experienced alternating periods of surplus and deficit. The results of these indices allowed us to determine the most remarkable and common drought years are: 1981, 1983, 1990, 1998, 2001, 2005, 2017 and 2019. This study is helpful for water resource managers to make decisions and develop tools for adaptation and mitigation of climate change impacts.


2014 ◽  
Vol 29 (4) ◽  
pp. 1193-1215 ◽  
Author(s):  
Giovanni Ravazzani ◽  
Secondo Barbero ◽  
Alessio Salandin ◽  
Alfonso Senatore ◽  
Marco Mancini

2018 ◽  
Vol 285 (1879) ◽  
pp. 20180639 ◽  
Author(s):  
Oscar Nordahl ◽  
Petter Tibblin ◽  
Per Koch-Schmidt ◽  
Hanna Berggren ◽  
Per Larsson ◽  
...  

In terrestrial environments, cold-blooded animals can attain higher body temperatures by sun basking, and thereby potentially benefit from broader niches, improved performance and higher fitness. The higher heat capacity and thermal conductivity of water compared with air have been universally assumed to render heat gain from sun basking impossible for aquatic ectotherms, such that their opportunities to behaviourally regulate body temperature are largely limited to choosing warmer or colder habitats. Here we challenge this paradigm. Using physical models we first show that submerged objects exposed to natural sunlight attain temperatures in excess of ambient water. We next demonstrate that free-ranging carp ( Cyprinus carpio ) can increase their body temperature during aquatic sun basking close to the surface. The temperature excess gained by basking was larger in dark than in pale individuals, increased with behavioural boldness, and was associated with faster growth. Overall, our results establish aquatic sun basking as a novel ecologically significant mechanism for thermoregulation in fish. The discovery of this previously overlooked process has practical implications for aquaculture, offers alternative explanations for behavioural and phenotypic adaptations, will spur future research in fish ecology, and calls for modifications of models concerning climate change impacts on biodiversity in marine and freshwater environments.


Sign in / Sign up

Export Citation Format

Share Document