A new data-driven subgrid 2d turbulence parameterization and comparison with conventional kinetic energy backscatter parameterizations in NEMO ocean model

Author(s):  
Pavel Perezhogin

<p>Kinetic energy backscatter (KEB) parameterizations of subgrid 2d turbulence have shown their efficiency in ocean models as they restore activity of mesoscale eddies. Modern KEBs utilize only two properties of badly resolved inverse energy cascade: KEB tendency should be larger than turbulent viscosity in spatial scale and amount of returning energy should compensate energy loss due to eddy viscosity. Typical operators for KEB tendency are Laplace operator with negative viscosity coefficient and stochastic process. Application of artificial neural networks (ANN) to approximate subgrid forces may give rise to new KEB models. The main challenge in this direction is to preprocess subgrid forces in such a way to reveal a part corresponding to returning of energy from subgrid scales. In this work, we propose to define subgrid forces as a term nudging a coarse-resolution model toward high-resolution model. This force is energy-generating and may be approximated with ANN. Conventional KEBs and ANN model are compared in Double-Gyre configuration of NEMO ocean model.</p>

Author(s):  
Pavel A. Perezhogin

Abstract Eddy-permitting numerical ocean models resolve mesoscale turbulence only partly, that leads to underestimation of eddy kinetic energy (EKE). Mesoscale dynamics can be amplified by using kinetic energy backscatter (KEB) parameterizations returning energy from the unresolved scales. We consider two types of KEB: stochastic and negative viscosity ones. The tuning of their amplitudes is based on a local budget of kinetic energy, thus, they are ‘energetically-consistent’ KEBs. In this work, the KEB parameterizations are applied to the NEMO ocean model in Double-Gyre configuration with an eddy-permitting resolution (1/4 degree). To evaluate the results, we compare this model with an eddy-resolving one (1/9 degree). We show that the meridional overturning circulation (MOC), meridional heat flux, and sea surface temperature (SST) can be significantly improved with the KEBs. In addition, a better match has been found between the time power spectra of the eddy-permitting and the eddy-resolving model solutions.


Ocean Science ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 503-519 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2006 ◽  
Vol 3 (3) ◽  
pp. 637-669 ◽  
Author(s):  
S. Natale ◽  
R. Sorgente ◽  
S. Gaberšek ◽  
A. Ribotti ◽  
A. Olita

Abstract. Ocean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions.


2011 ◽  
Vol 8 (3) ◽  
pp. 1161-1214 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2021 ◽  
Author(s):  
Stephan Juricke ◽  
Sergey Danilov ◽  
Marcel Oliver ◽  
Nikolay Koldunov ◽  
Dmitry Sidorenko ◽  
...  

<p>Capturing mesoscale eddy dynamics is crucial for accurate simulations of the large-scale ocean currents as well as oceanic and climate variability. Eddy-mean flow interactions affect the position, strength and variations of mean currents and eddies are important drivers of oceanic heat transport and atmosphere-ocean-coupling. However, simulations at eddy-permitting resolutions are substantially underestimating eddy variability and eddy kinetic energy many times over. Such eddy-permitting simulations will be in use for years to come, both in coupled and uncoupled climate simulations. We present a set of kinetic energy backscatter schemes with different complexity as alternative momentum closures that can alleviate some eddy related biases such as biases in the mean currents, in sea surface height variability and in temperature and salinity. The complexity of the schemes reflects in their computational costs, the related simulation improvements and their adaptability to different resolutions. However, all schemes outperform classical viscous closures and are computationally less expensive than a related necessary resolution increase to achieve similar results. While the backscatter schemes are implemented in the ocean model FESOM2, the concepts can be adjusted to any ocean model including NEMO.</p>


2021 ◽  
pp. 50-66
Author(s):  
V. N. Stepanov ◽  
◽  
Yu. D. Resnyanskii ◽  
B. S. Strukov ◽  
A. A. Zelen’ko ◽  
...  

The quality of simulation of model fields is analyzed depending on the assimilation of various types of data using the PDAF software product assimilating synthetic data into the NEMO global ocean model. Several numerical experiments are performed to simulate the ocean–sea ice system. Initially, free model was run with different values of the coefficients of horizontal turbulent viscosity and diffusion, but with the same atmospheric forcing. The model output obtained with higher values of these coefficients was used to determine the first guess fields in subsequent experiments with data assimilation, while the model results with lower values of the coefficients were assumed to be true states, and a part of these results was used as synthetic observations. The results are analyzed that are assimilation of various types of observational data using the Kalman filter included through the PDAF to the NEMO model with real bottom topography. It is shown that a degree of improving model fields in the process of data assimilation is highly dependent on the structure of data at the input of the assimilation procedure.


2019 ◽  
Vol 867 ◽  
pp. 906-933 ◽  
Author(s):  
Riccardo Togni ◽  
Andrea Cimarelli ◽  
Elisabetta De Angelis

In this work we present and demonstrate the reliability of a theoretical framework for the study of thermally driven turbulence. It consists of scale-by-scale budget equations for the second-order velocity and temperature structure functions and their limiting cases, represented by the turbulent kinetic energy and temperature variance budgets. This framework represents an extension of the classical Kolmogorov and Yaglom equations to inhomogeneous and anisotropic flows, and allows for a novel assessment of the turbulent processes occurring at different scales and locations in the fluid domain. Two relevant characteristic scales, $\ell _{c}^{u}$ for the velocity field and $\ell _{c}^{\unicode[STIX]{x1D703}}$ for the temperature field, are identified. These variables separate the space of scales into a quasi-homogeneous range, characterized by turbulent kinetic energy and temperature variance cascades towards dissipation, and an inhomogeneity-dominated range, where the production and the transport in physical space are important. This theoretical framework is then extended to the context of large-eddy simulation to quantify the effect of a low-pass filtering operation on both resolved and subgrid dynamics of turbulent Rayleigh–Bénard convection. It consists of single-point and scale-by-scale budget equations for the filtered velocity and temperature fields. To evaluate the effect of the filter length $\ell _{F}$ on the resolved and subgrid dynamics, the velocity and temperature fields obtained from a direct numerical simulation are split into filtered and residual components using a spectral cutoff filter. It is found that when $\ell _{F}$ is smaller than the minimum values of the cross-over scales given by $\ell _{c,min}^{\unicode[STIX]{x1D703}\ast }=\ell _{c,min}^{\unicode[STIX]{x1D703}}Nu/H=0.8$, the resolved processes correspond to the exact ones, except for a depletion of viscous and thermal dissipations, and the only role of the subgrid scales is to drain turbulent kinetic energy and temperature variance to dissipate them. On the other hand, the resolved dynamics is much poorer in the near-wall region and the effects of the subgrid scales are more complex for filter lengths of the order of $\ell _{F}\approx 3\ell _{c,min}^{\unicode[STIX]{x1D703}}$ or larger. This study suggests that classic eddy-viscosity/diffusivity models employed in large-eddy simulation may suffer from some limitations for large filter lengths, and that alternative closures should be considered to account for the inhomogeneous processes at subgrid level. Moreover, the theoretical framework based on the filtered Kolmogorov and Yaglom equations may represent a valuable tool for future assessments of the subgrid-scale models.


Author(s):  
Xiyu Peng ◽  
Karin S Dorman

Abstract Motivation Next-generation amplicon sequencing is a powerful tool for investigating microbial communities. A main challenge is to distinguish true biological variants from errors caused by amplification and sequencing. In traditional analyses, such errors are eliminated by clustering reads within a sequence similarity threshold, usually 97%, and constructing operational taxonomic units, but the arbitrary threshold leads to low resolution and high false-positive rates. Recently developed ‘denoising’ methods have proven able to resolve single-nucleotide amplicon variants, but they still miss low-frequency sequences, especially those near more frequent sequences, because they ignore the sequencing quality information. Results We introduce AmpliCI, a reference-free, model-based method for rapidly resolving the number, abundance and identity of error-free sequences in massive Illumina amplicon datasets. AmpliCI considers the quality information and allows the data, not an arbitrary threshold or an external database, to drive conclusions. AmpliCI estimates a finite mixture model, using a greedy strategy to gradually select error-free sequences and approximately maximize the likelihood. AmpliCI has better performance than three popular denoising methods, with acceptable computation time and memory usage. Availability and implementation Source code is available at https://github.com/DormanLab/AmpliCI. Supplementary information Supplementary material are available at Bioinformatics online.


2015 ◽  
Vol 42 (21) ◽  
pp. 9379-9386 ◽  
Author(s):  
Jan K. Rieck ◽  
Claus W. Böning ◽  
Richard J. Greatbatch ◽  
Markus Scheinert

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 621
Author(s):  
Federico Angel Velazquez-Muñoz ◽  
Anatoliy Filonov

The Gulf of California has many regions of potential tidal-stream energy that have been identified and characterized using in-situ measurements and numerical ocean models. The Midriff Islands region has received particular attention due to its increased current speeds and high kinetic energy. This increase in energy can be seen in the formation of internal wave packets propagating for several hundred kilometers. Here we present a brief description of internal wave measurements travel towards the Northern Gulf and explore energy generation sites. In this paper we characterize the tidal inflow and outflow that passes throughout the Midriff Islands in the central part of the Gulf. We use a three-dimensional numerical ocean model that adequately reproduces the tidal flow and the increase in speed and kinetic energy between the islands. The current flow structure shows the highest velocity cores near the shore and far from the bottom. During the rising tide, the maximum current flow (~0.6 ms−1) was found between Turón Island and San Lorenzo Island, from the surface to 200 m depth. When the currents flowed out of the Gulf, during the falling tide, the maximum negative current (−0.8 ms−1) was found between Tiburon Island and Turón Island, from near the surface to 80 m depth. Although there are favorable conditions for power generation potential by tidal flows, the vertical variability of the current must be considered for field development and equipment installation sites.


Sign in / Sign up

Export Citation Format

Share Document