Global Air quality Forecast and Information Systems (GAFIS) - a new WMO - GAW initiative

Author(s):  
Johannes Flemming ◽  
Okasna Tarasova ◽  
Lu Ren ◽  
Alexander Baklanov ◽  
Greg Carmichael

<p>Air pollution is the single largest environmental risk factor to health globally; it contributes to climate change, is detrimental for ecosystems, damages property, impacts visibility and can threaten food and water security. A wide variety of Air Quality (AQ) systems operate at different spatial and temporal scales to provide information required to mitigate the impact of or to reduce air pollution. </p><p>Recognising the importance to support the transition of scientific efforts into useful services, the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organisation (WMO) has started an initiative on Global Air quality Forecast and Information Systems (GAFIS). GAFIS aims to become a network for the development of good practices for air quality forecasting and monitoring services using  diverse approaches. GAFIS will closely interact with existing GAW efforts on air pollution forecasting and dust strom prediction, and it intends to build strong links with the international health community. As a major first step, GAFIS will carry out and maintain a survey of AQ information systems and identify areas and regions with a lack of adequate AQ services. GAFIS aims to improve access to air quality observations and to encourage better quality control and meta-data provision.  GAFIS will initiate coordinated evaluation activities of air quality services using a harmonized evaluation protocol. Finally,  promoting operational applications of atmospheric composition feedbacks in Numerical Weather Prediction is a further objective of GAFIS.</p><p>In the presentation we will introduce GAFIS to the scientific community and invite collaboration within its framework. </p>

Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


2018 ◽  
Author(s):  
Wanmin Gong ◽  
Stephen R. Beagley ◽  
Sophie Cousineau ◽  
Mourad Sassi ◽  
Rodrigo Munoz-Alpizar ◽  
...  

Abstract. A first regional assessment of the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions was conducted in this study. Model simulations were carried out on a limited-area domain (at 15-km horizontal resolution) centred over the Canadian Arctic, using the Environment and Climate Change Canada's on-line air quality forecast model (GEM-MACH), to investigate the contribution from the marine shipping emissions over the Canadian Arctic waters (at both present and projected future levels) to ambient concentrations of criteria pollutants (O3, PM2.5, NO2, and SO2), atmospheric deposition of sulphur and nitrogen, atmospheric loading and deposition of black carbon in the Arctic. Several model upgrades were introduced for this study, including the treatment of sea-ice in the dry deposition parameterization, chemical lateral boundary conditions, and the inclusion of North American wildfire emissions. The model is shown to have similar skills in predicting ambient O3 and PM2.5 concentrations in the Canadian Arctic and northern regions as the current operational air quality forecast models in North America and Europe. In particular, the model is able to simulate well the observed O3 and PM components at the Canadian high Arctic site, Alert. The model assessment shows that, at the current (2010) level, Arctic shipping emissions contribute to less than 1 % of ambient O3 concentration over the eastern Canadian Arctic and between 1 and 5 % of ambient PM2.5 concentration over the shipping channels. Arctic shipping emissions make a much greater contributions to the ambient NO2 and SO2 concentrations, at 10–50 % and 20–100 %, respectively. At the projected 2030 business-as-usual (BAU) level, the impact of Arctic shipping emissions is predicted to increase to up to 5 % in ambient O3 concentration over a broad region of the Canadian Arctic and to 5–20 % in ambient PM2.5 concentration over the shipping channels. In contrast, if emission controls such as the ones implemented in the current North American Emission Control Area (NA ECA) are to be put in place over the Canadian Arctic waters, the impact of shipping to ambient criteria pollutants would be significantly reduced. For example, with NA-ECA-like controls, the shipping contributions to population-weighted concentration of SO2 and PM2.5 would be brought down to below the current level. The contribution of Canadian Arctic shipping to the atmospheric deposition of sulphur and nitrogen is small at the current level,


2012 ◽  
Vol 12 (21) ◽  
pp. 10387-10404 ◽  
Author(s):  
J. Struzewska ◽  
J. W. Kaminski

Abstract. The aim of this study is to assess the impact of urban cover on high-resolution air quality forecast simulations with the GEM-AQ (Global Environmental Multiscale and Air Quality) model. The impact of urban area on the ambient atmosphere is non-stationary, and short-term variability of meteorological conditions may result in significant changes of the observed intensity of urban heat island and pollutant concentrations. In this study we used the Town Energy Balance (TEB) parameterization to represent urban effects on modelled meteorological and air quality parameters at the final nesting level with horizontal resolution of ~5 km over Southern Poland. Three one-day cases representing different meteorological conditions were selected and the model was run with and without the TEB parameterization. Three urban cover categories were used in the TEB parameterization: mid-high buildings, very low buildings and low density suburbs. Urban cover layers were constructed based on an area fraction of towns in a grid cell. To analyze the impact of urban parameterization on modelled meteorological and air quality parameters, anomalies in the lowest model layer for the air temperature, wind speed and pollutant concentrations were calculated. Anomalies of the specific humidity fields indicate that the use of the TEB parameterization leads to a systematic reduction of moisture content in the air. Comparison with temperature and wind speed measurements taken at urban background monitoring stations shows that application of urban parameterization improves model results. For primary pollutants the impact of urban areas is most significant in regions characterized with high emissions. In most cases the anomalies of NO2 and CO concentrations were negative. This reduction is most likely caused by an enhanced vertical mixing due to elevated surface temperature and modified vertical stability.


2016 ◽  
Author(s):  
Nikos Daskalakis ◽  
Kostas Tsigaridis ◽  
Stelios Myriokefalitakis ◽  
George S. Fanourgakis ◽  
Maria Kanakidou

Abstract. During the last 30 years significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition changes over the past three decades have been performed to assess the impact of these measures. The simulations are based on assimilated meteorology to account for the year-to-year observed climate variability and on different anthropogenic emissions scenarios of pollutants which may or may not account for air quality legislation application. The ACCMIP dataset historical emissions are used as the starting point. We show that air quality legislation has been more efficient than thought in limiting the rapid increase of air pollutants due to significant technology development. The achieved reductions in nitrogen oxides, carbon monoxide, black carbon and sulphate aerosols are found to be significant when comparing to simulations neglecting legislation for the protection of the environment. We also show the large tropospheric air-quality benefit from the development of cleaner technology. These 30-year hindcast simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air-quality have been masked by the explosive increase in local population and the disproportional increase in energy demand.


2014 ◽  
Vol 7 (3) ◽  
pp. 3403-3439
Author(s):  
Q. Wu ◽  
W. Xu ◽  
A. Shi ◽  
Y. Li ◽  
X. Zhao ◽  
...  

Abstract. The MM5-SMOKE-CMAQ model system, which was developed by the United States Environmental Protection Agency (US EPA) as the Models-3 system, has been used for daily air quality forecasts in the Beijing Municipal Environmental Monitoring Center (Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing (EMS-Beijing) since the Olympic Games 2008. According to the daily forecast results for the entire duration of 2010, the model shows good model performances in the PM10 forecast on most days but clearly underestimates some air pollution episodes. A typical air pollution episode from 11–20 January 2010 was chosen, where the observed air pollution index of particulate matter (PM10-API) reached to 180 while the forecast's PM10-API was about 100. In this study, three numerical methods are used for model improvement: first, enhance the inner domain with 3 km resolution grids: the coverage is expanded from only Beijing to the area including Beijing and its surrounding cities; second, add more regional point source emissions located at Baoding, Landfang and Tangshan, which is to the south and east of Beijing; third, update the area source emissions, which includes the regional area source emissions in Baoding and Tangshan and the local village–town level area source emissions in Beijing. As a result, the hindcast shows a much better model performance in the national standard station-averaged PM10-API, whereas the daily hindcast PM10-API reaches 180 and is much closer to the observation and has a correlation coefficient of 0.93. The correlation coefficient of the PM10-API in all Beijing MEMC stations between the hindcast and observation is 0.82, obviously higher than the forecast's 0.54, and the FAC2 increases from 56% in the forecast to 84% in the hindcast, while the NMSE decreases from 0.886 to 0.196. The hindcast also has better model performance in PM10 hourly concentrations during the typical air pollution episode, the correlation coefficient increases from 0.77 in the forecast to 0.88, the FAC increases from 62% to 74%, and the NMSE decreases to 0.190. All of this illustrates that the hindcast gives much better model performance than the forecast in PM10 prediction in Beijing stations.


2020 ◽  
Author(s):  
Guangqiang Zhou

<p>Air pollution is severely focused due to its distinct effect on climate change and adverse effect on human health, ecological system, etc. Eastern China is one of the most polluted areas in the world and many actions were taken to reduce air pollution. Numerical forecast of air quality was proved to be one of the effective ways to help to deal with air pollution. This abstract will present the advance, uncertainty and thinking about the future of the numerical air quality forecast emphasized in eastern China region. Brief history of numerical air quality modeling in Shanghai Meteorological Serveice (SMS) will be reviewed. The operational regional atmospheric environmental modeling system for eastern China (RAEMS) and its performance on forecasting the major air pollutants over eastern China region will be introduced. And uncertainty will be analyzed meanwhile challenges and actions to be done in the future are to be suggested for better service of numerical air quality forecast.</p>


2020 ◽  
Author(s):  
Radenko Pavlovic ◽  
Jacinthe Racine ◽  
Marika Egyed ◽  
Serge Lamy ◽  
Pierre Boucher

<p><strong>Canadian Air Quality Forecasting and Information Systems</strong></p><p>Environment and Climate Change Canada (ECCC) has been in charge of the national air quality program for more than 20 years. As of today, air pollution remains one of the most important environmental risk factors to health, in addition to hazardous effects on climate change, ecosystems, properties, and food and water chain.</p><p>Currently, Canadian air quality forecasting and information systems with observational and modeling components are a key element for policy and mitigation measures, which are used to reduce the negative impacts of air pollution. The operational ECCC’s air quality program provides immediate adaptive measures based on early warning services. In addition to this operational service, the air quality scenario and policy modelling is essential for implementing cost-effective emission reduction strategies and local planning to ensure compliance with air quality standards.</p><p>Canadian air quality forecasting and information systems also enable access to air quality data at different temporal and spatial scales. This is done through coordination of national activities to facilitate seamless provision of atmospheric composition information at various scales. This work will present Canadian air quality forecasting and information systems, components, collaboration, application and data streaming, as an example that can be helpful in building the WMO GAFIS initiative.</p>


2010 ◽  
Vol 28 (1) ◽  
pp. 61-74 ◽  
Author(s):  
L. Menut ◽  
B. Bessagnet

Abstract. The atmospheric composition is a societal issue and, following new European directives, its forecast is now recommended to quantify the air quality. It concerns both gaseous and particles species, identified as potential problems for health. In Europe, numerical systems providing daily air quality forecasts are numerous and, mostly, operated by universities. Following recent European research projects (GEMS, PROMOTE), an organization of the air quality forecast is currently under development. But for the moment, many platforms exist, each of them with strengths and weaknesses. This overview paper presents all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge. As modeling systems are now able to reasonably forecast gaseous species, and in a lesser extent aerosols, the future directions would concern the use of these systems with ensemble approaches and satellite data assimilation. If numerous improvements were recently done on emissions and chemistry knowledge, improvements are still needed especially concerning meteorology, which remains a weak point of forecast systems. Future directions will also concern the use of these forecast tools to better understand and quantify the air pollution impact on health.


2012 ◽  
Vol 12 (4) ◽  
pp. 9517-9551
Author(s):  
J. Struzewska ◽  
J. W. Kaminski

Abstract. The aim of this study is to assess the impact of urban cover on high-resolution air quality forecast simulations with the GEM-AQ model. The impact of urban area on the ambient atmosphere is non-stationary and short-term variability of meteorological conditions may result in significant changes of the observed intensity of urban heat island and pollutant concentrations. In this study we used the Town Energy Balance (TEB) parameterization to represent urban effects on modelled meteorological and air quality parameters at the final nesting level with horizontal resolution of ~5 km over Southern Poland. Three one-day cases representing different meteorological conditions were selected and the model was run with and without the TEB parameterization. Three urban cover categories were used in the TEB parameterization: mid-high buildings, sparse buildings and a mix of buildings and nature. Urban cover layers were constructed based on an area fraction of towns in a grid cell. To analyze the impact of urban parameterization on modelled meteorological and air quality parameters, anomalies in the lowest model layer for the temperature, wind speed and pollutant concentrations were calculated. Anomalies of the specific humidity fields indicate that the use of the TEB parameterization leads to a systematic reduction of moisture content in the air. Comparison with temperature and wind speed measurements taken at urban background monitoring stations shows that application of urban parameterization improves model results. For primary pollutants the impact of urban areas is most significant in regions characterized with high emissions. In most cases the anomalies of NO2 and CO concentrations are negative. This reduction is most likely caused by an enhanced vertical mixing due to elevated surface temperature and modified vertical stability. Although the outcome from this study is promising, it does not give an answer concerning the benefits of using TEB in the GEM-AQ model in an operational configuration. Additional long term evaluation would be required to better estimate the anthropogenic heat flux and to assess the urban impact in longer time scales (seasonal and annual average).


2021 ◽  
Author(s):  
Patrick Campbell ◽  
Youhua Tang ◽  
Pius Lee ◽  
Barry Baker ◽  
Daniel Tong ◽  
...  

Abstract. A new dynamical core, known as the Finite Volume Cubed-Sphere (FV3) and developed at both NASA and NOAA, is used in NOAA’s Global Forecast System (GFS) and in limited area models (LAMs) for regional weather and air quality applications. NOAA has also upgraded the operational FV3GFS to version 16 (GFSv16), and includes a number of significant developmental advances to the model configuration, data assimilation, and underlying model physics, particularly for atmospheric composition to weather feedback. Concurrent with the GFSv16 upgrade, we couple the GFSv16 with the Community Multiscale Air Quality (CMAQ) model to form an advanced version of the National Air Quality Forecast Capability (NAQFC) that will continue to protect human and ecosystem health in the U.S. Here we describe the development of the FV3GFSv16 coupling with a “state-of-the-science” CMAQ model version 5.3.1. The GFS-CMAQ coupling is made possible by the seminal version of the NOAA-ARL Atmosphere-Chemistry Coupler (NACC), which became the next operational NAQFC system (i.e., NACC-CMAQ) on July 20, 2021. NACC-CMAQ has a number of scientific advancements that include satellite- based data acquisition technology to improve land cover and soil characteristics, and inline wildfire smoke and dust predictions that are vital to predictions of fine particulate matter (PM2.5) concentrations during hazardous events affecting society, ecosystems, and human health. The GFS-driven NACC-CMAQ has significantly different meteorological and chemical predictions than the previous operational NAQFC, where evaluation of NACC-CMAQ shows generally improved near-surface ozone and PM2.5 predictions and diurnal patterns, both of which are extended to a 72-hour (3-day) forecast with this system.


Sign in / Sign up

Export Citation Format

Share Document