Success of the co-production and delivery of local and scientific weather forecasts information with and for smallholder farmers in Ghana

Author(s):  
Talardia Gbangou ◽  
Rebecca Sarku ◽  
Erik Vanslobbe ◽  
Fulco Ludwig ◽  
Gordana Kranjac-Berisavljevic ◽  
...  

<p>Many West African farmers struggle to cope with changing weather and climatic conditions that keep them from making optimal decisions and meeting food and income security. The development of more accessible and credible weather and climate services (WCIS) can help local farmers improve their adaptive capacity. Such adequate WCIS often requires a joined collaboration between farmers and scientists to co-create an integrated local and scientific forecasting knowledge. We examine (i) the design requirements (i.e. Both technical and non-technical tools) and (ii) evaluate the outcomes of a successful implementation of the co-production and delivery of WCIS in Ada East district, Ghana. We implemented a user-driven design approach in a citizen science experiment involving prototype design and testing, training workshops, and interviews with farmers, agricultural and meteorological extension agents from 2018 to 2019. Farmers were handed with digital tools (i.e. Smart phones with web and mobile applications) and rain gauges as research instruments to collect and receive weather forecast data, and interact with scientists.</p><p>               Our results show that farmers’ engagement increased over time and is associated with the trainings and the improvement of the design features of the applications used. The evaluation shows an increase in the usability of tools, the reach or networking with other farmers, and the understanding of uncertainty (probabilistic) aspect of the forecasts over time. Local farmers evaluated both the local and scientific forecasts as accurate enough and useful for their daily farming decisions. We concluded that using modern technology in a co-production process, with targeted training, can improve the access and use of weather forecasts information.</p>

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 902
Author(s):  
Talardia Gbangou ◽  
Rebecca Sarku ◽  
Erik Van Slobbe ◽  
Fulco Ludwig ◽  
Gordana Kranjac-Berisavljevic ◽  
...  

Many West African farmers are struggling to cope with changing weather and climatic conditions. This situation limits farmers’ ability to make optimal decisions for food and income security. Developing more useful and accessible weather and climate information services (WCIS) can help small-scale farmers improve their adaptive capacity. The literature suggests that such WCIS can be achieved if forecast information is produced jointly by farmers and scientists. To test this hypothesis and derive design requirements for effective WCIS, we evaluated the outcomes of an experimental coproduction of weather forecasts in Ada, Ghana. The experiment involved a user-driven design and testing of information and communications technology (ICT)-based digital (smartphones and apps) and rainfall monitoring tools by 22 farmers. They collected data and received weather forecasts during the 2018/2019 study period. The results showed a positive evaluation of the intervention, expressed by the level of engagement, the increase in usability of the tools and understanding of forecast uncertainty, outreach capacity with other farmers, and improved daily farming decisions. The success of the intervention was attributed to the iterative design process, as well as the training, monitoring, and technical support provided. We conclude that the application of modern technology in a coproduction process with targeted training and monitoring can improve smallholder farmers’ access to and use of weather and climate forecast information.


2020 ◽  
Vol 12 (8) ◽  
pp. 3246
Author(s):  
Maurizio Bacci ◽  
Youchaou Ousman Baoua ◽  
Vieri Tarchiani

Agriculture production in Nigerien rural areas mainly depends on weather variability. Weather forecasts produced by national or international bodies have very limited dissemination in rural areas and even if broadcast by local radio, they remain generic and limited to short-term information. According to several experiences in West Africa, weather and climate services (WCSs) have great potential to support farmers’ decision making. The challenge is to reach local communities with tailored information about the future weather to support strategic and tactical crop management decisions. WCSs, in West Africa, are mainly based on short-range weather forecasts and seasonal climate forecasts, while medium-range weather forecasts, even if potentially very useful for crop management, are rarely produced. This paper presents the results of a pilot initiative in Niger to reach farming communities with 10-day forecasts from the National Oceanic and Atmospheric Administration—Global Forecast System (NOAA-GFS) produced by the National Centers for Environmental Prediction (NCEP). After the implementation of the download and treatment chain, the Niger National Meteorological Directorate can provide 10-day agrometeorological forecasts to the agricultural extension services in eight rural municipalities. Exploiting the users’ evaluation of the forecasts, an analysis of usability and overall performance of the service is described. The results demonstrate that, even in rural and remote areas, agrometeorological forecasts are valued as powerful and useful information for decision-making processes. The service can be implemented at low cost with effective technologies making it affordable and sustainable even in developing countries. Nonetheless, the service’s effectiveness depends on several aspects mainly related to the way information is communicated to the public.


2019 ◽  
Vol 12 ◽  
pp. 01005 ◽  
Author(s):  
A. Graça ◽  

Agriculture is primarily driven by weather. Forecast climatic conditions will further increase its vulnerability to crop failure and pest damage. Nowhere will this have consequences as dramatic as in the Mediterranean Basin. The challenge here is how to increase resilience of this complex ecological, economic, and cultural heritage in an era of decreasing resources and climate change. Climate services have the potential to support the transition towards a climate-resilient and low-carbon society. The MED-GOLD project will demonstrate the proof-of-concept for climate services in agriculture by developing case studies for three staples of the Mediterranean food system: grape, olive and durum wheat. The new climate services for agriculture developed by MED-GOLD will provide targeted information to companies that will allow them to act over longer time periods (months, seasons or even decades into the future) that go beyond the traditional 2–5 days provided by current weather forecasts. The cumulative benefit of MED-GOLD will range from enhancing agricultural management to supporting and informing policy-making at the Mediterranean, European and global levels. This is because olives, grapes, and durum wheat are grown across the globe and produce the raw materials for global food commodities such as olive oil, wine and pasta.


2021 ◽  
Author(s):  
Dimitrios Stamoulis ◽  
Panos Giannopoulos

<p>Communicating the scientific data of the weather forecasts to the general public has always been a challenge. Using computer graphics’ visual representations to convey the message to television viewers and through weather apps and websites has certainly helped a lot to popularize the weather forecast consumption by the general public. However, these representations are not information rich since they are abstraction; moreover they are not always very actionable on the receiver side to help one decide how s/he will “live” the forecast weather conditions. Therefore, there is a need to personalize the forecast based on past user experience and personal needs. The forecast has to become more human- and needs-oriented and more focused to the particular requirements of each individual person. The challenge is to move from providing the abstraction of atmospheric information to a real sense of how the weather will "feel" to the individual.</p><p>We therefore propose a new co-creation process in which the audience is called on to provide a daily feedback on how they lived the weather conditions personally, so that, “my personal forecast” can be produced making the forecast more actionable on the user side. Preliminary, but more personalized, such attempts include the “feels like” temperature forecasts. To arrive at the “my personal forecast”, AI-based recommender systems need to be applied, using fuzzy logic as the appropriate method for the user to express how s/he actually lived personally lived weather conditions every day. Over time this information can then be used to transform science-based descriptions of weather conditions into a sense of how the weather will be experienced at a personal level.</p>


Author(s):  
Klepikov O.V. ◽  
Kolyagina N.M. ◽  
Berezhnova T.A. ◽  
Kulintsova Ya.V.

Relevance. Today, in preventive medicine, climatic conditions that have a pathological effect on the functional state of a person are increasingly being updated. the occurrence of exacerbations of many diseases can be causally associated with various weather conditions. Aim: to develop the main tasks for improving the organization of medical care for weather-dependent patients with diseases of the cardiovascular system. Material and methods. The assessment of personnel, material and technical support and the main performance indicators of an outpatient clinic was carried out on the example of the Voronezh city polyclinic No. 18 to develop the main tasks for improving the organization of medical care for weather-dependent patients with diseases of the cardiovascular system. Results. The main personnel problem is the low staffing of district therapists and specialists of a narrow service. One of the priorities for reducing the burden on medical hospitals is the organization of inpatient replacement medical care on the basis of outpatient clinics. The indicators for the implementation of state guarantees for the outpatient network for 2018, which were fully implemented, are given. The analysis of the planned load performance by polyclinic specialists is presented. Cardiological and neurological services carry out measures to reduce the risk of exacerbations of diseases with cerebral atherosclerosis, hypertension, and major neurological nosologies. Conclusion. Improving the organization of medical care for weather-dependent patients with cardiovascular diseases are: informing patients about the sources of specialized medical weather forecasts in the region, organizing the work of the medical prevention office, implementing an interdepartmental approach to providing health care to the most vulnerable groups of the population.


2011 ◽  
Vol 47 (2) ◽  
pp. 205-240 ◽  
Author(s):  
JAMES W. HANSEN ◽  
SIMON J. MASON ◽  
LIQIANG SUN ◽  
ARAME TALL

SUMMARYWe review the use and value of seasonal climate forecasting for agriculture in sub-Saharan Africa (SSA), with a view to understanding and exploiting opportunities to realize more of its potential benefits. Interaction between the atmosphere and underlying oceans provides the basis for probabilistic forecasts of climate conditions at a seasonal lead-time, including during cropping seasons in parts of SSA. Regional climate outlook forums (RCOF) and national meteorological services (NMS) have been at the forefront of efforts to provide forecast information for agriculture. A survey showed that African NMS often go well beyond the RCOF process to improve seasonal forecast information and disseminate it to the agricultural sector. Evidence from a combination of understanding of how climatic uncertainty impacts agriculture, model-based ex-ante analyses, subjective expressions of demand or value, and the few well-documented evaluations of actual use and resulting benefit suggests that seasonal forecasts may have considerable potential to improve agricultural management and rural livelihoods. However, constraints related to legitimacy, salience, access, understanding, capacity to respond and data scarcity have so far limited the widespread use and benefit from seasonal prediction among smallholder farmers. Those constraints that reflect inadequate information products, policies or institutional process can potentially be overcome. Additional opportunities to benefit rural communities come from expanding the use of seasonal forecast information for coordinating input and credit supply, food crisis management, trade and agricultural insurance. The surge of activity surrounding seasonal forecasting in SSA following the 1997/98 El Niño has waned in recent years, but emerging initiatives, such as the Global Framework for Climate Services and ClimDev-Africa, are poised to reinvigorate support for seasonal forecast information services for agriculture. We conclude with a discussion of institutional and policy changes that we believe will greatly enhance the benefits of seasonal forecasting to agriculture in SSA.


2019 ◽  
Vol 100 (4) ◽  
pp. 605-619 ◽  
Author(s):  
A. J. Illingworth ◽  
D. Cimini ◽  
A. Haefele ◽  
M. Haeffelin ◽  
M. Hervo ◽  
...  

Abstract To realize the promise of improved predictions of hazardous weather such as flash floods, wind storms, fog, and poor air quality from high-resolution mesoscale models, the forecast models must be initialized with an accurate representation of the current state of the atmosphere, but the lowest few kilometers are hardly accessible by satellite, especially in dynamically active conditions. We report on recent European developments in the exploitation of existing ground-based profiling instruments so that they are networked and able to send data in real time to forecast centers. The three classes of instruments are i) automatic lidars and ceilometers providing backscatter profiles of clouds, aerosols, dust, fog, and volcanic ash, the last two being especially important for air traffic control; ii) Doppler wind lidars deriving profiles of wind, turbulence, wind shear, wind gusts, and low-level jets; and iii) microwave radiometers estimating profiles of temperature and humidity in nearly all weather conditions. The project includes collaboration from 22 European countries and 15 European national weather services, which involves the implementation of common operating procedures, instrument calibrations, data formats, and retrieval algorithms. Currently, data from 265 ceilometers in 19 countries are being distributed in near–real time to national weather forecast centers; this should soon rise to many hundreds. One wind lidar is currently delivering real time data rising to 5 by the end of 2019, and the plan is to incorporate radiometers in 2020. Initial data assimilation tests indicate a positive impact of the new data.


2020 ◽  
Author(s):  
Marion Jourdan ◽  
Christian Piedallu ◽  
Jonas Baudry ◽  
Xavier Morin

ABSTRACTClimate change modifies ecosystem processes directly through its effect on environmental conditions, but also indirectly by changing community composition. Theoretical studies and grassland experiments suggest that diversity may increase and stabilize communities’ productivity over time. Few recent studies on forest ecosystems suggested the same pattern but with a larger variability between the results. In this paper, we aimed to test stabilizing diversity effect for two kinds of mixtures (Fagus sylvatica - Quercus pubescens and Fagus sylvatica - Abies alba), and to assess how climate may affect the patterns. We used tree ring data from forest plots distributed along a latitudinal gradient across French Alps. We found that diversity effect on stability in productivity varies with stand composition. Most beech–fir stands showed a greater stability in productivity over time than monocultures, while beech–oak stands showed a less stable productivity. Considering non-additive effects, no significant trends were found, regardless the type of mixed stands considered. We further highlighted that these patterns could be partially explained by asynchrony between species responses to annual climatic conditions (notably to variation in temperature or precipitation), overyielding, and climatic conditions. We also showed that the intensity of the diversity effect on stability varies along the ecological gradient, consistently with the stress gradient hypothesis for beech-oak forests, but not for beech-fir forests. This study showed the importance of the species identity on the relationships between diversity, climate and stability of forest productivity. Better depicting diversity and composition effects on forest ecosystem functioning appears to be crucial for forest managers to promote forest adaptation and maintain timber resource in the context of on-going climate change.


Author(s):  
Peter Düben ◽  
Nils Wedi ◽  
Sami Saarinen ◽  
Christian Zeman

<p>Global simulations with 1.45 km grid-spacing are presented that were performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulations are uncoupled (without ocean, sea-ice or wave model), using 62 or 137 vertical levels and the full complexity of weather forecast simulations including recent date initial conditions, real-world topography, and state-of-the-art physical parametrizations and diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapour, liquid, ice, rain, snow). Simulations are evaluated with regard to computational efficiency and model fidelity. Scaling results are presented that were performed on the fastest supercomputer in Europe - Piz Daint (Top 500, Nov 2018). Important choices for the model configuration at this unprecedented resolution for the IFS are discussed such as the use of hydrostatic and non-hydrostatic equations or the time resolution of physical phenomena which is defined by the length of the time step. </p><p>Our simulations indicate that the IFS model — based on spectral transforms with a semi-implicit, semi-Lagrangian time-stepping scheme in contrast to more local discretization techniques — can provide a meaningful baseline reference for O(1) km global simulations.</p>


Sign in / Sign up

Export Citation Format

Share Document