The experience of Iberoamerican Meteorological Cooperation in the improvement of the provision of Weather and Climate Services

Author(s):  
Jorge Tamayo

<p>The cooperation between Iberoamerican National Meteorological and Hydrological Services (NMHS) it is coordinated through the Conference of Directors of Iberoamerican NMHS (CIMHET), who takes advantage of the unique framework that provides the cultural and idiomatic heritage in the region. It is constituted by all 21 NMHSs of Iberoamerica, including Spain and Portugal. CIMHET provides a forum for dialogue between Iberoamerican NMHSs, recognized by World Meteorological Organization (WMO) as an example of cooperation and operability.<br>The Conference approves, at its annual meetings from 2003, an action plan over three strategic lines: Institutional strengthening and resource mobilization; provision of meteorological, climatic and hydrological services; education and training<br>Among the activities carried out in the latest action plans related to a better provision of Weather and Climate Services (WCS) includes the support for the creation and operation of Virtual Regional Centers for the Prevention of Severe Events, the development of a free database management system, namely MCH, which has been donated to WMO for distribution among interested NMHS, the implementation of a regional lightning detection network in Central America, or the development of downscaling climate change scenarios for Central America, with access to information and view via web.<br>In order to carry out the proper provision of WCS, it is also necessary to have sufficient and properly trained NMHS staff. Therefore, this activity, both for technical and management personnel, has been one of the fundamental elements in the activities carried out by CIMHET, with more than 60 courses and workshops from 2004, most of which have been face-to-face, attended by more than 1500 students.<br>It is also important to have the appropriate infrastructure and human resources so that NMHS can provide their services to society in a reliable and timely manner. For this, several modernization projects have been developed, mainly considering the needs of the different user sectors and showing their potential of NMHS for the different national social and economic sectors in case of solving their shortcomings.<br>Finally, intersectoral coordination mechanisms have been established with other Iberomerican networks with common interests, such as the Iberoamerican Network of Climate Change Offices (RIOCC) and the Conference of Iberoamerican Directors of Water (CODIA). A number of priority activities related to climate change adaptation issues linked to extreme hydrometeorological phenomena have been identified and started its development.</p>

2021 ◽  
Author(s):  
Jorge Tamayo ◽  
Ernesto Rodriguez-Camino ◽  
Sara Covaleda

<p>The intersectoral workshop held in December 2016 among the Ibero-American networks on water (CODIA), climate change (RIOCC) and meteorology (CIMHET) identified the need to dispose of downscaled climate change scenarios for Central America. Such scenarios would be developed by National Meteorological and Hydrological Services (NMHS) in the region, based on a common methodology, allowing the assessment of climate change impacts on water resources and extreme hydro-meteorological events.</p><p>One final outcome of the project has been a freely accessible web viewer, installed on the Centro Clima webpage (https://centroclima.org/escenarios-cambio-climatico/), managed by CRRH-SICA, where all information generated during the project is available for consultation and data downloading by the different sectors of users.</p><p>A key element in this project has been to integrate many downscaled projections based on different methods (dynamical and statistical), totalizing 45 different projections, and aiming at estimating the uncertainty coming from different sources in the best possible way.</p><p>Another essential element has been the strong involvement of the different user sectors through national workshops, first, at the beginning of the project for the identification and definition of viewer features the project, and then for the presentation of results and planning of its use by prioritized sectors.</p><p>In a second phase of the project, a regional working group made up of experts from the NMHSs will be in charge of viewer maintenance and upgrade, including new sectoral parameters, developed in collaboration with interested users, and computation and addition of new downscaled projections from CMIP 6 in collaboration with AEMET.</p><p>Finally, following the request of CIMHET, the possibility of replicating this project for other areas of Ibero-America is being evaluated.</p>


Author(s):  
S.V. Emelina ◽  
◽  
V.M. Khan ◽  

The possibility of developing specialized seasonal forecasting within the framework of the North Eurasia Climate Centre is discussed. The purpose of these forecasts is to access the impacts of significant large-scale anomalies of meteorological elements on various economic sectors for the timely informing of government services and private businesses to select optimal strategies for planning preventive measures. A brief overview of the groups of climatic risks in the context of the impacts on the socio-economic sphere is given according to the Russian and foreign bibliographic sources. Examples of the activities of some Regional Climate Centers that produce forecast information with an assessment of possible impacts of weather and climate conditions at seasonal scales on various human activities are given. Keywords: climate services, regional climate forums, weather and climate risks, North Eurasia Climate Centre


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Leonel Lara-Estrada ◽  
Livia Rasche ◽  
Uwe A. Schneider

AbstractCoffee cultivation in Central America provides goods and services at local, national, and international levels. Climate change is likely to affect the magnitude and continuity of these benefits by reducing the land suitability for coffee cultivation. To quantify the impacts of climate change on land suitability, we use the Bayesian network model Agroecological Land Evaluation for Coffea arabica L. (ALECA) and estimate the land suitability for coffee production in 2000, 2050, and 2080 under three climate change scenarios based on relative concentration pathways (RCPs) 2.6, 4.5, and 8.5. Results indicate that even under the less severe climate scenarios, over half of the current coffee area in Central America will experience a decline in its land suitability for coffee production, from excellent or good to moderate and marginal, and that the change will not happen in the more distant future of 2080, but by 2050. Under RCP 8.5, most coffee areas become of marginal and moderate suitability. The findings show that the continuity of coffee cultivation in a large portion of coffee areas in Central America is under threat and that farmers and policy-makers should develop adaptation portfolios for their farms and regions in a timely manner.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0193570 ◽  
Author(s):  
Pablo Imbach ◽  
Sin Chan Chou ◽  
André Lyra ◽  
Daniela Rodrigues ◽  
Daniel Rodriguez ◽  
...  

2021 ◽  
Author(s):  
Elizabeth Fuller ◽  
Claire Scannell ◽  
Victoria Ramsey ◽  
Rebecca Parfitt ◽  
Nicola Golding

<p>In 2018, the UN estimated that around 55% of the world’s population currently live within urban areas, with this value projected to rise to 60% by 2030 (United Nations, 2018). High levels of urbanisation, coupled with an increasing trend in extreme weather under future climate change scenarios, combine to create significant challenges to increasing urban resilience for the future (Masson et al., 2020).</p><p>Urban climate services provide tools to support decision making at a range of scales across the city, from day-to-day operations to informing urban design over longer timescales (Grimmond et al., 2015). Whilst urban climate services may be developed at a range of scales (Grimmond et al., 2020), this presentation looks at a prototype climate service which provides long-term climate change projections at the city-specific scale. The ‘City Pack’ was developed through a process of co-production, in which project development aims to move away from a one-way push of scientific information, to a two-way collaborative process of knowledge construction and sharing (Vincent et al., 2019).</p><p>This ‘City Pack’ service was co-developed by the Met Office and Bristol City Council following an assessment of the Council’s climate information needs. The City Pack comprises of three non-technical factsheets which explain how the climate of Bristol has changed and will continue to change into the 21<sup>st</sup> Century based on the UKCP climate projections. The City Pack’s primary aims are to raise awareness of how a cities climate may change in the future and to inform the development of city resilience whilst also providing a tool to be used by city stakeholders to raise awareness of climate change across the council. The audience for the City Pack therefore includes city officials, city planners and the general public. The Bristol City Pack has since provided an evidence base for the Bristol City Council Climate Change Risk Assessment and informed Bristol’s Climate Strategy. In addition, the City Pack has been used to engage with the council’s wider stakeholders and also as a communication and training tool. As such, whilst the co-production of a climate service may be time and resource intensive, the process may also be rewarded with the production of a highly tailored and user-relevant tool.</p><p>Following the success of the prototype ‘City Pack’ service for Bristol City Council, the Met Office are continuing to produce City Packs for additional cities across the UK, and also in China. The project is seeking to ascertain if services which are co-produced with and bespoke to one set of stakeholders, may provide an equally valuable service for other cities and if so, how can we make these services scalable.</p>


2021 ◽  
Vol 14 (1) ◽  
pp. 107-124
Author(s):  
◽  
Karthik Kashinath ◽  
Mayur Mudigonda ◽  
Sol Kim ◽  
Lukas Kapp-Schwoerer ◽  
...  

Abstract. Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning.


2017 ◽  
Author(s):  
Yu Li ◽  
Matteo Giuliani ◽  
Andrea Castelletti

Abstract. Recent advances in weather and climate services (WCSs) are showing increasing forecast skills over seasonal and longer time scales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end-users, especially when forecasts do not reach their final users, when the provider is not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of WCSs for irrigated agriculture by complementing traditional forecast quality assessments with a Coupled Human-Natural System behavioral model which reproduces farmers’ decisions. This allows a more critical assessment of the forecast value mediated by the end-users’ perspective, including farmers’ risk attitudes and behavioral factors. Our results show that the quality of state- of-the-art WCSs is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting the most skillful product. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure that is strongly impacted by the behavioral attitudes of the farmers, which can produce rank reversals in the quantification of the WCSs operational value depending on the different perceptions of risk and uncertainty.


Sign in / Sign up

Export Citation Format

Share Document