Experimental study of resonant shallow flows past a lateral cavity: a benchmark test for high-resolution numerical models

Author(s):  
Sergio Martínez Aranda ◽  
Adrián Navas-Montilla ◽  
Antonio Lozano ◽  
Pilar García-Navarro

<p><span>The study of resonant shallow flows past a lateral cavity is of great relevance due to their interest in civil and environmental engineering [1]. Such flows exhibit the presence of a standing gravity wave, called seiche, which is coupled with the shedding of vortices at the opening of the cavity. A complete understanding of such phenomenon is necessary as it may determine the mass exchange between the main channel and the cavity [2]. </span><span>A better insight into this phenomenon helps to improve the design and implementation of innovative river bank restoration techniques</span><span>. An experimental study of the resonant flow in a laboratory flume with a single lateral cavity is herein presented. Five different flow configurations at a fixed Froude number (Fr=0.8) are considered. The main novelty of the present work is the use of a pioneering non-intrusive experimental technique [3] to measure the water surface at the channel-cavity region. This optical technique offers high resolution 2D data in time and space of the water surface evolution, allowing to determine the relevant features of the seiche oscillation, i.e. spatial distribution of oscillation nodes and anti-nodes, oscillation modes and amplitude of the oscillation. Such data are supplemented with Particle Image Velocimetry measurements to perform a more detailed study of the resonance phenomenon. High-resolution two-dimensional amplitude oscillation maps of the seiche phenomenon are presented for the experimental water depth. Experimental velocity fields inside the cavity are presented and confirm the inherent coupling between the unstable shear layer at the opening of the cavity and the gravity standing wave. The high quality of the experimental data reported in this work makes this data set a suitable benchmark for numerical simulation models in order to evaluate their performance in the resolution of turbulent resonant shallow flows.</span></p><p><span>[1] C. Juez, M. Thalmann, A. J. Schleiss & M. J. Franca, Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities, Advances in Water Resources, 115 (2018) 44-59.</span></p><p><span>[2] I. Kimura & T. Hosoda, Fundamental properties of flows in open channels with dead zone, Journal of Hydraulic Engineering 123 (1997) 98-107.</span></p><p><span>[3] S. Martínez-Aranda, J. Fernández-Pato, D. Caviedes-Voullième, I. García-Palacín & P. García-Navarro, Towards transient experimental water surfaces: a new benchmark dataset for 2D shallow water solvers, Advances in water resources, 121 (2018) 130-149.</span></p>

2020 ◽  
Author(s):  
Adrián Navas-Montilla ◽  
Sergio Martínez-Aranda ◽  
Antonio Lozano ◽  
Pilar García-Navarro

<p>Steady shallow flows past an open channel lateral cavity have been widely studied in the last years due to their engineering and environmental relevance, e.g. for river restoration purposes [1]. Such flows can induce the excitation of an eigenmode of a gravity standing wave inside the cavity, called seiche, which may be coupled with the shedding of vortices at the opening of the cavity. A complete understanding of such phenomenon is necessary as it may determine the mass exchange between the main channel and the cavity [2]. A numerical study of the resonant flow in a channel with a single lateral cavity is herein presented. Five different flow configurations at a fixed Froude number (Fr=0.8), measured in the laboratory [3], are used as a benchmark. Such experiments are reproduced using a high-order 2D depth-averaged URANS model based on the shallow water equations, assuming that shallow water turbulence is mainly horizontal [4]. The large-scale horizontal vortices are resolved by the model, whereas the effect of the small-scale turbulence is accounted for by means of a turbulence model. Water surface elevation and velocity measurements are used for comparison with the numerical results. A detailed comparison of the seiche amplitude distribution in the cavity-channel area is presented, showing a good agreement between the numerical results and the observations. Frequency analysis techniques are used to extract the relevant features of the flow. It is evidenced that the proposed model is able to reproduce the observed spatial distribution of oscillation nodes and anti-nodes, as well as the time-averaged flow field. The coupling mechanism between the gravity wave inside the cavity and the unstable shear layer at the opening of the cavity is also accurately captured. <br><br></p><p>[1] C. Juez, M. Thalmann, A. J. Schleiss & M. J.  Franca, Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities, Advances in Water Resources,  115 (2018) 44-59.</p><p>[2] I. Kimura & T. Hosoda, Fundamental properties of flows in open channels with dead zone, Journal of Hydraulic Engineering 123 (1997) 98-107.</p><p>[3] S. Martínez-Aranda, J. Fernández-Pato, D. Caviedes-Voullième, I. García-Palacín & P. García-Navarro, Towards transient experimental water surfaces: a new benchmark dataset for 2D shallow water solvers, Advances in water resources, 121 (2018) 130-149.</p><p>[4] A. Navas-Montilla, C. Juez, M.J. Franca & J. Murillo, Depth-averaged unsteady RANS simulation of resonant shallow flows in lateral cavities using augmented WENO-ADER schemes, Journal of Computational Physics, 24 (2019) 203-217.</p>


2002 ◽  
Vol 2 (3/4) ◽  
pp. 147-155 ◽  
Author(s):  
Ch. Jaedicke ◽  
A. D. Sandvik

Abstract. Blowing snow and snow drifts are common features in the Arctic. Due to sparse vegetation, low temperatures and high wind speeds, the snow is constantly moving. This causes severe problems for transportation and infrastructure in the affected areas. To minimise the effect of drifting snow already in the designing phase of new structures, adequate models have to be developed and tested. In this study, snow distribution in Arctic topography is surveyed in two study areas during the spring of 1999 and 2000. Snow depth is measured by ground penetrating radar and manual methods. The study areas encompass four by four kilometres and are partly glaciated. The results of the surveys show a clear pattern of erosion, accumulation areas and the evolution of the snow cover over time. This high resolution data set is valuable for the validation of numerical models. A simple numerical snow drift model was used to simulate the measured snow distribution in one of the areas for the winter of 1998/1999. The model is a two-level drift model coupled to the wind field, generated by a mesoscale meteorological model. The simulations are based on five wind fields from the dominating wind directions. The model produces a satisfying snow distribution but fails to reproduce the details of the observed snow cover. The results clearly demonstrate the importance of quality field data to detect and analyse errors in numerical simulations.


Author(s):  
Getachew Dubache ◽  
Birhanu Asmerom ◽  
Waheed Ullah ◽  
Bob Alex Ogwang ◽  
Farshad Amiraslani ◽  
...  

AbstractThe indirect rainfall estimates by satellites and numerical models are the alternative options for the regions lacking enough and accurate ground observations. However, these indirect estimates often lack homogeneity and need to be evaluated before application. This study used gauge observations to test the accuracy of recently produced high-resolution satellite-based and numerical model output rainfall products over Ethiopia. Tropical Applications of Meteorology Using Satellite data and Ground-Based Observations (TAMSAT v3.1), Climate Hazard group Infrared Precipitation with Stations (CHIRPS v2.0), and the ERA5 reanalysis products were evaluated at monthly, seasonal, and annual temporal scales for the years 1992–2009. The satellite products showed nearly similar characteristics with much better accuracy than the model reanalysis output, which underestimated the rainfall amounts. Both satellite and reanalysis products captured the shapes of the rainfall at a monthly scale but less accurately at a seasonal scale. In general, the satellite-based products outperformed the reanalysis data set with a high correlation coefficient and index of agreement values, as well as low Root Mean Square Error and BIAS values. On the other hand, the reanalysis (ERA5) product showed a considerable underestimation in all sites. Therefore, satellite-based products are more reliable for researches in the region. However, the algorithms in both satellites need further calibration for a better estimation of seasonal rainfall amounts.


Author(s):  
G. Mandlburger ◽  
R. Weiß ◽  
T. Artz

Abstract. Precise knowledge of water surface level heights is crucial for safe ship navigation and as basis for calibration of hydrodynamic-numerical models. While Airborne Laser Scanning (ALS) is a well established technique for topographic mapping, ALS-based water surface mapping using conventional infrared lasers suffers from the high degree of specular reflection which leads to data voids for off-nadir angles beyond 5–7 degrees. The advent of single photon sensitive ALS systems using green laser sources presents the prospect of large-area, high-resolution water surface mapping due to the high receiver sensitivity and measurement rate of such systems. Building on previous studies on subject matters, we present the results of a pilot project initiated and conducted by the German Federal Institute of Hydrology (BfG, Koblenz) at the Rhine River. Three specific test sites with varying water surface and flow velocity properties were captured on October 30th and 31th, 2019 with the Leica SPL100 from flying altitudes of 3000 m, 2500 m, 1600 m, and 800 m, respectively. As anticipated, the water surface laser pulse density was high and exhibited 20–145 points/m2 depending on flying altitude. After quality control, strip adjustment, and point cloud analysis, three water surface classification methods were implemented based on: (i) height quantiles, (ii) point cloud segmentation, and (iii) inverse DTM filtering. All approaches featured relative and absolute water level height accuracies better than 10 cm. We conclude that Single Photon LiDAR based high resolution mapping of water surface levels and tilts is feasible when employing application specific data acquisition parameters, i.e., off-nadir angle ≤10° and flying altitude ≤3000 m.


Author(s):  
D. E. Becker

An efficient, robust, and widely-applicable technique is presented for computational synthesis of high-resolution, wide-area images of a specimen from a series of overlapping partial views. This technique can also be used to combine the results of various forms of image analysis, such as segmentation, automated cell counting, deblurring, and neuron tracing, to generate representations that are equivalent to processing the large wide-area image, rather than the individual partial views. This can be a first step towards quantitation of the higher-level tissue architecture. The computational approach overcomes mechanical limitations, such as hysterisis and backlash, of microscope stages. It also automates a procedure that is currently done manually. One application is the high-resolution visualization and/or quantitation of large batches of specimens that are much wider than the field of view of the microscope.The automated montage synthesis begins by computing a concise set of landmark points for each partial view. The type of landmarks used can vary greatly depending on the images of interest. In many cases, image analysis performed on each data set can provide useful landmarks. Even when no such “natural” landmarks are available, image processing can often provide useful landmarks.


2002 ◽  
Vol 5 (3) ◽  
pp. 212-212 ◽  
Author(s):  
U. Tiede ◽  
A. Pommert ◽  
B. Pflesser ◽  
E. Richter ◽  
M. Riemer ◽  
...  

2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


Sign in / Sign up

Export Citation Format

Share Document