Drainage basins and glacier catchments for the Greenland Ice Sheet

Author(s):  
Lukas Krieger ◽  
Dana Floricioiu

<p>The drainage divides of ice sheets separate the overall glaciated area into multiple sectors and outlet glaciers. These catchments represent essential input data for partitioning glaciological measurements or modelling results to the individual glacier level. They specify the area over which basin specific measurements need to be integrated.</p><p>The delineation of drainage basins on ice sheets is challenging due to their gentle slopes accompanied by local terrain disturbances and complex patterns of ice movement. Therefore, in Greenland the basins have been mostly delineated along the major ice divides, which results in large drainage sectors containing multiple outlet glaciers. In [1] we developed a methodology for delineating individual glaciers that was applied to the Northeast Greenland sector and proposed slightly changed separations between 79N and Zachariae basins driven by the ice flow lines. In the present study the method is extended to the entire Greenland Ice Sheet.</p><p>We present a fully traceable approach that combines ice sheet wide velocity measurements by Sentinel-1 SAR and the 90 m TanDEM-X global DEM to derive individual glacier drainage basins for the entire Greenland Ice Sheet with a modified watershed algorithm. We delineate a total of 335 individual glacier catchments, a result triggered by the number and location of the selected seed points.</p><p>The resulting dataset will be made publicly available online and is extensible by even more granular delineations of individual tributaries upon request. The proposed approach has the potential to produce catchment areas also for the entirety of the Antarctic Ice Sheet.</p><p> </p><p>[1] Krieger, L., D. Floricioiu, and N. Neckel (Feb. 1, 2020). “Drainage Basin Delineation for Outlet Glaciers of Northeast Greenland Based on Sentinel-1 Ice Velocities and TanDEM-X Elevations”.  In:Remote  Sensing  of  Environment 237,  p.  111483.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.0a3a84f0b50066175890161/sdaolpUECMynit/12UGE&app=m&a=0&c=3dfbdc4652076318ef26948580f87415&ct=x&pn=gnp.elif&d=1" alt=""></p>

2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2013 ◽  
Vol 7 (6) ◽  
pp. 1721-1740 ◽  
Author(s):  
S. J. Livingstone ◽  
C. D. Clark ◽  
J. Woodward ◽  
J. Kingslake

Abstract. We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.


2015 ◽  
Vol 56 (70) ◽  
pp. 63-69 ◽  
Author(s):  
Denis Callens ◽  
Nicolas Thonnard ◽  
Jan T.M. Lenaerts ◽  
Jan M. Van Wessem ◽  
Willem Jan Van de Berg ◽  
...  

AbstractMass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between surface mass gain through precipitation and outflow across the grounding line. For the Antarctic ice sheet, grounding line outflow is governed by oceanic processes and outlet glacier dynamics. In this study, we compute the mass budget of major outlet glaciers in the eastern Dronning Maud Land sector of the Antarctic ice sheet using the input/output method. Input is given by recent surface accumulation estimates (SMB) of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. This approach is an improvement on previous studies, as the ice thickness is measured, rather than being estimated from hydrostatic equilibrium. In line with the general thickening of the ice sheet over this sector, we estimate the regional mass balance in this area at 3.15 ± 8.23 Gt a−1 according to the most recent SMB model results.


2010 ◽  
Vol 56 (197) ◽  
pp. 395-404 ◽  
Author(s):  
Yoshinori Iizuka ◽  
Hideki Miura ◽  
Shogo Iwasaki ◽  
Hideaki Maemoku ◽  
Takanobu Sawagaki ◽  
...  

AbstractIce originating near the inland ice divide of the ice sheet can reappear as marginal ice at the surface near the ice terminal in the ablation area. We have analyzed δ18O values and ion concentrations of the Skallen, Skarvsnes and Hamna terminal ice sections, located along the estuary line in the Sôya drainage basin, East Antarctica. The data suggest that the upper part of the Skallen terminal ice section could have originated from inland precipitation on the Shirase drainage basin during marine isotope stage (MIS) 5e, while the upper part of Skarvsnes and Hamna terminal ice sections could have originated from inland precipitation on the Sôya drainage basin. We calculate past elevation maps for the Antarctic ice sheet using the three-dimensional model, SICOPOLIS. This model suggests that the upstream portion of the Sôya drainage basin during the glacial period (MIS 2, 3 or 4) was located to the northeast of its present location. A flow history is proposed wherein ice from the inland Shirase drainage area flowed over the present ice-divide line from the Shirase to the Sôya drainage basin during the glacial period. The ice in the Sôya drainage basin then flowed to the marginal part of the sheet after the ice divide had assumed its present position.


2013 ◽  
Vol 7 (6) ◽  
pp. 5433-5460
Author(s):  
J. F. Levinsen ◽  
K. Khvorostovsky ◽  
F. Ticconi ◽  
A. Shepherd ◽  
R. Forsberg ◽  
...  

Abstract. In order to increase the understanding of the changing climate, the European Space Agency has launched the Climate Change Initiative (ESA CCI), a program which joins scientists and space agencies into 13 projects either affecting or affected by the concurrent changes. This work is part of the Ice Sheets CCI and four parameters are to be determined for the Greenland Ice Sheet (GrIS), each resulting in a dataset made available to the public: Surface Elevation Changes (SEC), surface velocities, grounding line locations, and calving front locations. All CCI projects have completed a so-called Round Robin exercise in which the scientific community was asked to provide their best estimate of the sought parameters as well as a feedback sheet describing their work. By inter-comparing and validating the results, obtained from research institutions world-wide, it is possible to develop the most optimal method for determining each parameter. This work describes the SEC Round Robin and the subsequent conclusions leading to the creation of a method for determining GrIS SEC values. The participants used either Envisat radar or ICESat laser altimetry over Jakobshavn Isbræ drainage basin, and the submissions led to inter-comparisons of radar vs. altimetry as well as cross-over vs. repeat-track analyses. Due to the high accuracy of the former and the high spatial resolution of the latter, a method, which combines the two techniques will provide the most accurate SEC estimates. The data supporting the final GrIS analysis stem from the radar altimeters on-board Envisat, ERS-1 and ERS-2. The accuracy of laser data exceeds that of radar altimetry; the Round Robin analysis has, however, proven the latter equally capable of dealing with surface topography thereby making such data applicable in SEC analyses extending all the way from the interior ice sheet to margin regions. This shows good potential for a~future inclusion of ESA CryoSat-2 and Sentinel-3 radar data in the analysis, and thus for obtaining reliable SEC estimates throughout the entire GrIS.


Polar Record ◽  
1972 ◽  
Vol 16 (100) ◽  
pp. 5-22 ◽  
Author(s):  
G. de Q. Robin

At the present time, only Antarctica and Greenland carry ice sheets comparable with the ice sheets that covered vast areas of the Northern Hemisphere as recently as 20 000 years ago. At the time of maximum glaciation, some 300 000 years ago, the volume of ice on earth was three times what it is today, and it covered the northern parts of continents all around the Arctic Ocean. In North America, ice stretched south as far as Kansas; in Europe, it extended down ot the River Thames and the Sudety mountains and covered much of Siberia. Even now, the Antarctic ice sheet covers an area of 12 million km2 and in places reaches depths of more than 4 km. The smaller Greenland ice sheet has an area of 1.8 million km2 and exceeds 3 km in depth.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 415 ◽  
Author(s):  
Andreas Groh ◽  
Martin Horwath ◽  
Alexander Horvath ◽  
Rakia Meister ◽  
Louise Sandberg Sørensen ◽  
...  

Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment (GRACE) allows to derive the temporal evolution in ice mass for both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS). Various algorithms have been used in a wide range of studies to generate Gravimetric Mass Balance (GMB) products. Results from different studies may be affected by substantial differences in the processing, including the applied algorithm, the utilised background models and the time period under consideration. This study gives a detailed description of an assessment of the performance of GMB algorithms using actual GRACE monthly solutions for a prescribed period as well as synthetic data sets. The inter-comparison exercise was conducted in the scope of the European Space Agency’s Climate Change Initiative (CCI) project for the AIS and GIS, and was, for the first time, open to everyone. GMB products generated by different groups could be evaluated and directly compared against each other. For the period from 2003-02 to 2013-12, estimated linear trends in ice mass vary between −99 Gt/yr and −108 Gt/yr for the AIS and between −252 Gt/yr and −274 Gt/yr for the GIS, respectively. The spread between the solutions is larger if smaller drainage basins or gridded GMB products are considered. Finally, findings from the exercise formed the basis to select the algorithms used for the GMB product generation within the AIS and GIS CCI project.


2013 ◽  
Vol 7 (2) ◽  
pp. 1177-1213 ◽  
Author(s):  
S. J. Livingstone ◽  
C. D. Clark ◽  
J. Woodward

Abstract. In this paper we use the Shreve hydraulic potential equation to predict subglacial lakes and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. For the Antarctic Ice Sheet we are able to predict known subglacial lakes with a >70% success rate, which demonstrates the validity of this method. Despite the success in predicting known subglacial lakes the calculations produce two-orders of magnitude more lakes than are presently identified, covering 4% of the ice-sheet bed. The difference is thought to result from our poor knowledge of the bed (which has resulted in artefacts associated with the interpolation method), intrinsic errors associated with the simplified modelling approach and because thousands of subglacial lakes, particularly smaller ones, remain to be found. Applying the same modelling approach to the Greenland Ice Sheet predicts only 90 lakes under the present-day ice-sheet configuration, covering 0.2% of the bed. The paucity of subglacial lakes in Greenland is thought to be a function of steeper overall ice-surface gradients. As no lakes have currently been located under Greenland, model predictions will make suitable targets for radar surveys of Greenland to identify subglacial lakes. During deglaciation from the Last Glacial Maximum both ice sheets had more subglacial lakes at their beds, though many of these lakes have persisted to present conditions. These lakes, inherited from past ice-sheet configurations would not form under current surface conditions, suggesting a retreating ice-sheet will have many more subglacial lakes than an advancing ice sheet. This hysteresis effect has implications for ice-stream formation and flow, bed lubrication and meltwater drainage. The lake model also allows modelling of the drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Significantly, key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are shown to have been susceptible to drainage switches and capture by neighbouring networks during deglaciation thus far.


2016 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
M.-F. Loutre ◽  
T. Fichefet

Abstract. As the most recent warm period in Earth’s history with a sea-level stand higher than present, the Last Interglacial period (~130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully-coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere and the Greenland and Antarctic ice sheets. In this set-up, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework. Surface mass balance changes are the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea-level and reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show multi millennial time scale variations as indicated by some reconstructions.


2014 ◽  
Vol 55 (66) ◽  
pp. 1-8 ◽  
Author(s):  
Alison F. Banwell ◽  
Martamaria Caballero ◽  
Neil S. Arnold ◽  
Neil F. Glasser ◽  
L. Mac Cathles ◽  
...  

AbstractSupraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal ice-sheet flow, and are thus agents by which warming is transmitted to the Antarctic and Greenland ice sheets. To characterize supraglacial lake variability we perform a comparative analysis of lake geometry and depth in two distinct regions, one on the pre-collapse (2002) Larsen B ice shelf, Antarctica, and the other in the ablation zone of Paakitsoq, a land-terminating region of the Greenland ice sheet. Compared to Paakitsoq, lakes on the Larsen B ice shelf cover a greater proportion of surface area (5.3% cf. 1%), but are shallower and more uniform in area. Other aspects of lake geometry (e.g. eccentricity, degree of convexity (solidity) and orientation) are relatively similar between the two regions. We attribute the notable difference in lake density and depth between ice-shelf and grounded ice to the fact that ice shelves have flatter surfaces and less distinct drainage basins. Ice shelves also possess more stimuli to small-scale, localized surface elevation variability, due to the various structural features that yield small variations in thickness and which float at different levels by Archimedes’ principle.


Sign in / Sign up

Export Citation Format

Share Document