scholarly journals Evolution of strain patterns in deforming upper plates in subduction zones: the case study of Cretaceous extension in the Iranian plateau

Author(s):  
Tiphaine Larvet ◽  
Laetitia Le Pourhiet ◽  
Philippe Agard

<p><span><span>Existing plate tectonic models rely on two essential features: (1) rigid tectonic plates and (2) very narrow plate boundaries where all deformation is localized. On the world geological map, plate boundaries are materialized by lines. Subduction plate boundaries, however, affect domains several hundred kilometers wide. In the upper plate of subduction zones, this deformation can result in the formation of orogenic-like compressive structures or extensional back-arc basins. In both cases, the respective contributions of slab movements, far-field stresses (i.e., boundary conditions) and tectonic inheritance in localizing strain in the upper plate are not yet well understood.</span></span></p><p><span><span>Located in the upper plate of the Late Triassic to Oligocene Neotethys subduction, the Iranian plateau records a long-lived convergence history, with numerous episodes of intraplate deformation. We herein focus on the Cretaceous back-arc opening (e.g., formation of the Nain-Baft marginal basin), whose possible triggers include a change in internal slab dynamics and/or regional-scale convergence dynamics (e.g., kinematics of the Neotethyan subduction, ridge subduction, opening of peripheral basins such as the Caspian Sea).</span></span></p><p><span><span>The Iranian plateau is part of a composite continental lithosphere made of blocks detached from Gondwana during the Paleozoic. It preserves evidence for structures inherited from the Precambrian Panafrican orogeny, as well as thinning and shortening during the opening and closure of the Paleotethys (during the Devonian and Late Triassic, respectively). Important lateral contrasts are observed after the Neotethys Permian rifting: the southwestern part (Sanandaj-Sirjan Zone) was thinned and filled with volcanic products, whereas the northeastern part (Kopeh-Dag and Yadz block) was thickened during the Late Triassic Cimmerian event. From NW to SE, deformation was also likely partitioned across large-scale strike-slip faults such as the Doruneh fault. These imprints make it difficult to assess the nature and extent of lateral heterogeneities in the crust, and in particular the variation of Moho depths prior to the Cretaceous extension. </span></span></p><p><span><span>In order to determine which parameters controlled the deformation of the Iranian upper plate, ultimately leading to localized back-arc extension along the Nain-Baft basin (i.e., SE of the Doruneh fault), we designed a parametric numerical study using the thermo-mechanical code pTatin2D, in which metamorphic reactions were implemented to model the subduction process realistically. Model results are evaluated based on the evolution of strain in the upper plate, in particular the characteristic size (~500 km) and duration of back-arc deformation (~30 Ma of extension prior to closure of this domain). The importance of structural inheritance is assessed by imposing either (1) a prexisiting crustal scale fault, (2) a partially thickened (3) or thinned crust. Those different tests allow to propose tentative geodynamic scenarios for the deformation of the upper plate Iranian plateau during the Cretaceous</span></span><span><span>.</span></span></p>

2021 ◽  
Author(s):  
Andrea Piccolo ◽  
Boris Kaus ◽  
Richard White ◽  
Nicolas Arndt ◽  
Nicolas Riel

<p>In the plate tectonic convection regime, the external lid is subdivided into discrete plates that move independently. Although it is known that the system of plates is mainly dominated by slab-pull forces, it is not yet clear how, when and why plate tectonics became the dominant geodynamic process in our planet. It could have started during the Meso-Archean (3.0-2.9 Ga). However, it is difficult to conceive a subduction driven system at the high mantle potential temperatures (<strong>Tp</strong>) that are thought to have existed around that time, because <strong>Tp</strong> controls the thickness and the strength of the compositional lithosphere making subduction unlikely. In recent years, however, a credible solution to the problem of subduction initiation during the Archean has been advanced, invoking a plume-induced subduction mechanism[1] that seems able to generate plate-tectonic like behaviour to first order. However, it has not yet been demonstrated how these tectonic processes interact with each other, and whether they are able to eventually propagate to larger scale subduction zones.</p><p>The Archean Eon was characterized by a high <strong>Tp</strong>[2]<strong>, </strong>which generates weaker plates, and a thick and chemically buoyant lithosphere. In these conditions, slab pull forces are inefficient, and most likely unable to be transmitted within the plate. Therefore, plume-related proto-plate tectonic cells may not have been able to interact with each other or showed a different interaction as a function of mantle potential temperature and composition of the lithosphere. Moreover, due to secular change of <strong>Tp, </strong>the dynamics may change with time. In order to understand the complex interaction between these tectonic seeds it is necessary to undertake large scale 3D numerical simulations, incorporating the most relevant phase transitions and able to handle complex constitutive rheological model.</p><p>Here, we investigate the effects of the composition and <strong>Tp </strong>independently to understand the potential implications of the interaction of plume-induced subduction initiation. We employ a finite difference visco-elasto-plastic thermal petrological code using a large-scale domain (10000 x 10000 x 1000 km along x, y and z directions) and incorporating the most relevant petrological phase transitions. We prescribed two oceanic plateaus bounded by subduction zones and we let the negative buoyancy and plume-push forces evolve spontaneously. The paramount question that we aim to answer is whether these configurations allow the generation of stable plate boundaries. The models will also investigate whether the presence of continental terrain helps to generate plate-like features and whether the processes are strong enough to generate new continental terrains <span>or assemble them </span></p><p>.</p><p> </p><p>[1]       T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev, and S. A. Whattam, “Plate tectonics on the Earth triggered by plume-induced subduction initiation,” Nature, vol. 527, no. 7577, pp. 221–225, 2015.</p><p>[2]       C. T. Herzberg, K. C. Condie, and J. Korenaga, “Thermal history of the Earth and its petrological expression,” Earth Planet. Sci. Lett., vol. 292, no. 1–2, pp. 79–88, 2010.</p><p>[3]       R. M. Palin, M. Santosh, W. Cao, S.-S. Li, D. Hernández-Uribe, and A. Parsons, “Secular metamorphic change and the onset of plate tectonics,” Earth-Science Rev., p. 103172, 2020.</p>


2020 ◽  
Vol 191 ◽  
pp. 37
Author(s):  
Adrien Romagny ◽  
Laurent Jolivet ◽  
Armel Menant ◽  
Eloïse Bessière ◽  
Agnès Maillard ◽  
...  

Slab retreat, slab tearing and interactions of slabs are first-order drivers of the deformation of the overriding lithosphere. An independent description of the tectonic evolution of the back-arc and peripheral regions is a pre-requisite to test the proposed conceptual, analogue and numerical models of these complex dynamics in 3-D. We propose here a new series of detailed kinematics and tectonic reconstructions from 35 Ma to the Present shedding light on the driving mechanisms of back-arc rifting in the Mediterranean where several back-arc basins all started to form in the Oligocene. The step-by-step backward reconstructions lead to an initial situation 35 Ma ago with two subduction zones with opposite direction, below the AlKaPeCa block (i.e. belonging to the Alboran, Kabylies, Peloritani, Calabrian internal zones). Extension directions are quite variable and extension rates in these basins are high compared to the Africa-Eurasia convergence velocity. The highest rates are found in the Western Mediterranean, the Liguro-Provençal, Alboran and Tyrrhenian basins. These reconstructions are based on shortening rates in the peripheral mountain belts, extension rates in the basins, paleomagnetic rotations, pressure-temperature-time paths of metamorphic complexes within the internal zones of orogens, and kinematics of the large bounding plates. Results allow visualizing the interactions between the Alps, Apennines, Pyrenean-Cantabrian belt, Betic Cordillera and Rif, as well as back-arc basins. These back-arc basins formed at the emplacement of mountain belts with superimposed volcanic arcs, thus with thick, hot and weak crusts explaining the formation of metamorphic core complexes and the exhumation of large portions of lower crustal domains during rifting. They emphasize the role of transfer faults zones accommodating differential rates of retreat above slab tears and their relations with magmatism. Several transfer zones are identified, separating four different kinematic domains, the largest one being the Catalan-Balearic-Sicily Transfer Zone. Their integration in the wider Mediterranean realm and a comparison of motion paths calculated in several kinematic frameworks with mantle fabric shows that fast slab retreat was the main driver of back-arc extension in this region and that large-scale convection was a subsidiary driver for the pre-8 Ma period, though it became dominant afterward. Slab retreat and back-arc extension was mostly NW-SE until ∼ 20 Ma and the docking of the AlKaPeCa continental blocks along the northern margin of Africa induced a slab detachment that propagated eastward and westward, thus inducing a change in the direction of extension from NW-SE to E-W. Fast slab retreat between 32 and 8 Ma and induced asthenospheric flow have prevented the transmission of the horizontal compression due to Africa-Eurasia convergence from Africa to Eurasia and favored instead upper-plate extension driven by slab retreat. Once slab retreat had slowed down in the Late Miocene, this N-S compression was felt and recorded again from the High Atlas to the Paris Basin.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guido M. Gianni ◽  
César Navarrete ◽  
Silvana Spagnotto

AbstractVertical slab-tearing has been widely reported in modern convergent settings profoundly influencing subduction and mantle dynamics. However, evaluating a similar impact in ancient convergent settings, where oceanic plates have been subducted and the geological record is limited, remains challenging. In this study, we correlate the lower mantle structure, which retained the past subduction configuration, with the upper-plate geological record to show a deep slab rupture interpreted as a large-scale tearing event in the early Mesozoic beneath southwestern Gondwana. For this purpose, we integrated geochronological and geological datasets with P-wave global seismic tomography and plate-kinematic reconstructions. The development of a Late Triassic-Early Jurassic slab-tearing episode supports (i) a slab gap at lower mantle depths, (ii) a contrasting spatiotemporal magmatic evolution, (iii) a lull in arc activity, and (iv) intraplate extension and magmatism in the Neuquén and Colorado basins. This finding not only has implications for identifying past examples of a fundamental process that shapes subduction zones, but also illustrates an additional mechanism to trigger slab-tearing in which plate rupture is caused by opposite rotation of slab segments.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 248
Author(s):  
Sencer Yücesan ◽  
Daniel Wildt ◽  
Philipp Gmeiner ◽  
Johannes Schobesberger ◽  
Christoph Hauer ◽  
...  

A systematic variation of the exposure level of a spherical particle in an array of multiple spheres in a high Reynolds number turbulent open-channel flow regime was investigated while using the Large Eddy Simulation method. Our numerical study analysed hydrodynamic conditions of a sediment particle based on three different channel configurations, from full exposure to zero exposure level. Premultiplied spectrum analysis revealed that the effect of very-large-scale motion of coherent structures on the lift force on a fully exposed particle resulted in a bi-modal distribution with a weak low wave number and a local maximum of a high wave number. Lower exposure levels were found to exhibit a uni-modal distribution.


2021 ◽  
Vol 13 (14) ◽  
pp. 7782
Author(s):  
Wenjing Zeng ◽  
Yongde Zhong ◽  
Dali Li ◽  
Jinyang Deng

The recreation opportunity spectrum (ROS) has been widely recognized as an effective tool for the inventory and planning of outdoor recreational resources. However, its applications have been primarily focused on forest-dominated settings with few studies being conducted on all land types at a regional scale. The creation of a ROS is based on physical, social, and managerial settings, with the physical setting being measured by three criteria: remoteness, size, and evidence of humans. One challenge to extending the ROS to all land types on a large scale is the difficulty of quantifying the evidence of humans and social settings. Thus, this study, for the first time, developed an innovative approach that used night lights as a proxy for evidence of humans and points of interest (POI) for social settings to generate an automatic ROS for Hunan Province using Geographic Information System (GIS) spatial analysis. The whole province was classified as primitive (2.51%), semi-primitive non-motorized (21.33%), semi-primitive motorized (38.60%), semi-developed natural (30.99%), developed natural (5.61%), and highly developed (0.96%), which was further divided into three subclasses: large-natural (0.63%), small natural (0.27%), and facilities (0.06%). In order to implement the management and utilization of natural recreational resources in Hunan Province at the county (city, district) level, the province’s 122 counties (cities, districts) were categorized into five levels based on the ROS factor dominance calculated at the county and provincial levels. These five levels include key natural recreational counties (cities, districts), general natural recreational counties (cities, districts), rural counties (cities, districts), general metropolitan counties (cities, districts), and key metropolitan counties (cities, districts), with the corresponding numbers being 8, 21, 50, 24, and 19, respectively.


A numerical study on the transition from laminar to turbulent of two-dimensional fuel jet flames developed in a co-flowing air stream was made by adopting the flame surface model of infinite chemical reaction rate and unit Lewis number. The time dependent compressible Navier–Stokes equation was solved numerically with the equation for coupling function by using a finite difference method. The temperature-dependence of viscosity and diffusion coefficient were taken into account so as to study effects of increases of these coefficients on the transition. The numerical calculation was done for the case when methane is injected into a co-flowing air stream with variable injection Reynolds number up to 2500. When the Reynolds number was smaller than 1000 the flame, as well as the flow, remained laminar in the calculated domain. As the Reynolds number was increased above this value, a transition point appeared along the flame, downstream of which the flame and flow began to fluctuate. Two kinds of fluctuations were observed, a small scale fluctuation near the jet axis and a large scale fluctuation outside the flame surface, both of the same origin, due to the Kelvin–Helmholtz instability. The radial distributions of density and transport coefficients were found to play dominant roles in this instability, and hence in the transition mechanism. The decreased density in the flame accelerated the instability, while the increase in viscosity had a stabilizing effect. However, the most important effect was the increase in diffusion coefficient. The increase shifted the flame surface, where the large density decrease occurs, outside the shear layer of the jet and produced a thick viscous layer surrounding the jet which effectively suppressed the instability.


2017 ◽  
Vol 118 ◽  
pp. 188-198 ◽  
Author(s):  
Yongsheng Tian ◽  
Keyuan Zhang ◽  
Naihua Wang ◽  
Zheng Cui ◽  
Lin Cheng

2021 ◽  
Vol 13 (4) ◽  
pp. 649
Author(s):  
Arne Døssing ◽  
Eduardo Lima Simoes da Silva ◽  
Guillaume Martelet ◽  
Thorkild Maack Rasmussen ◽  
Eric Gloaguen ◽  
...  

Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground surveys are often incomplete and slow, whereas airborne surveys suffer from being inflexible, expensive and characterized by a reduced signal-to-noise ratio, due to increased sensor-to-source distance. With the rise of reliable and affordable survey-grade Unmanned Aerial Vehicles (UAVs), and the developments of light-weight magnetometers, the shortcomings of traditional magnetic surveying systems may be bypassed by a carefully designed UAV-borne magnetometer system. Here, we present a study on the development and testing of a light-weight scalar field UAV-integrated magnetometer bird system (the CMAGTRES-S100). The idea behind the CMAGTRES-S100 is the need for a high-speed and flexible system that is easily transported in the field without a car, deployable in most terrain and weather conditions, and provides high-quality scalar data in an operationally efficient manner and at ranges comparable to sub-regional scale helicopter-borne magnetic surveys. We discuss various steps in the development, including (i) choice of sensor based on sensor specifications and sensor stability tests, (ii) design considerations of the bird, (iii) operational efficiency and flexibility and (iv) output data quality. The current CMAGTRES-S100 system weighs ∼5.9 kg (including the UAV) and has an optimal surveying speed of 50 km/h. The system was tested along a complex coastal setting in Brittany, France, targeting mafic dykes and fault contacts with magnetite infill and magnetite nuggets (skarns). A 2.0 × 0.3 km area was mapped with a 10 m line-spacing by four sub-surveys (due to regulatory restrictions). The sub-surveys were completed in 3.5 h, including >2 h for remobilisation and the safety clearance of the area. A noise-level of ±0.02 nT was obtained and several of the key geological structures were mapped by the system.


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document