High-Northern-latitudes permafrost extend in MPI-ESM simulations of SSP126 and SSP585 

Author(s):  
Goran Georgievski ◽  
Philipp De Vrese ◽  
Stefan Hagemann ◽  
Victor Brovkin

<p>The representation of permafrost related processes in Earth System Models (ESM) remains a challenge. A recent collaboration between two related projects (Kohlenstoff im Permafrost (Carbon in Permafrost) – KoPf, and Study Of the Development of Extreme Events over Permafrost areas – SODEEP) yielded a new vertical structure of the soil column in JSBACH, the land component of the Max Planck Institute (MPI) for Meteorology ESM (MPI-ESM). This feature resulted in a better representation of the vertical soil moisture dynamics and the energy transfer due to soil freezing and thawing, which is particularly relevant for the high northern latitudes.</p><p>Although, air temperatures are simulated reasonably well with the MPI-ESM, care must be taken not to introduce a bias when implementing new processes in the model or changing existing parametrizations. Here we investigate the permafrost extent in two Shared Socioeconomic Pathways (SSP) simulations (SSP126 and SSP585) with the MPI-ESM using prescribed ocean surface boundary conditions. Our results show a consistency between terrestrial and atmospheric dynamics, when comparing the permafrost extent determined on basis of simulated active layer thickness (soil variable) and Day Degree Thaw Index (DDTI; atmospheric variable). The latter is calculated as the annual sum of positive average daily 2m air temperatures and its square root can be used as an indicator of annual maximum thaw depth.</p><p>The SSP126 simulation shows that both DDTI and thaw depth stabilize within the range of the present-day interannual variability, while SSP585 indicates a substantial deepening of the active layer – resulting in a complete disappearance of near-surface permafrost in large parts of the high northern latitudes - and DDTI in SSP585 simulation increases in excess of 2000°C. These values at present characterize northern mid-latitudes i.e. landscapes not underlined by permafrost. A preliminary analysis indicates that the decline of the permafrost extent in SSP585 occurs mostly during the second half of 21st century. Furthermore, the SSP585 simulation also shows an increase in the number of extreme events relevant for permafrost degradation. The investigated extreme climate patterns (as defined in the frame of the SODEEP project) include abrupt warming (defined as occurrence of annual mean temperature above 5-year running mean) and increase in seasonal precipitation anomalies, as well as changes in specific snow characteristics.</p>

2021 ◽  
Author(s):  
Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

Abstract Alaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to infiltrate soil layers beneath through the harmonic fluctuation of the active layer. Past studies found that warmer air temperature resulted in increasingly deeper thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a study site on the North Slope. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings. It is found that the active layer thickens when the ground surface is either gravel fill or undisturbed tundra, but its thickness varies based on climate model predictions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that strain is most significant in the near-surface layers during thaw, indicating that settlement would be concurrent with annual thaw penetration. From this study, the climate model predicted air temperatures for a warming Arctic suggest that the thaw of near-surface frozen ground is largely dependent on ground surface conditions and the thermal properties of soil. Moreover, ice content is a major factor in the settlement predictions on Alaska’s North Slope. This study's results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2007 ◽  
Vol 44 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Ming-ko Woo ◽  
Michael Mollinga ◽  
Sharon L Smith

The variability of maximum active layer thickness in boreal and tundra environments has important implications for hydrological processes, terrestrial and aquatic ecosystems, and the integrity of northern infrastructure. For most planning and management purposes, the long-term probability distribution of active layer thickness is of primary interest. A robust method is presented to calculate maximum active layer thickness, employing the Stefan equation to compute phase change of moisture in soils and using air temperature as the sole climatic forcing variable. Near-surface ground temperatures (boundary condition for the Stefan equation) were estimated based on empirical relationships established for several sites in the Mackenzie valley. Simulations were performed for typically saturated mineral soils, overlain with varying thickness of peat in boreal and tundra environments. The probability distributions of simulated maximum active layer thickness encompass the range of measured thaw depths provided by field data. The effects of climate warming under A2 and B2 scenarios for 2050 and 2100 were investigated. Under the A2 scenario in 2100, the simulated median thaw depth under a thin organic cover may increase by 0.3 m, to reach 1 m depth for a tundra site and 1.6 m depth for a boreal site. The median thaw depth in 2100 is dampened by about 50% under a 1 m thick organic layer. Without an insulating organic cover, thaw penetration can increase to reach 1.7 m at the tundra site. The simulations provide quantitative support that future thaw penetration in permafrost terrain will deepen differentially depending on location and soil.


2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.


2019 ◽  
Vol 9 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Filip Hrbáček ◽  
Daniel Nývlt ◽  
Kamil Láska ◽  
Michaela Kňažková ◽  
Barbora Kampová ◽  
...  

This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 2011–2017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumulation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed. The effect of lithology on the ground physical properties and the active layer thickness was also investigated. Laboratory analysis of ground thermal properties showed variation in thermal conductivity (0.3 to 0.9 W m-1 K-1). The thickest active layer (89 cm) was observed on the Berry Hill slopes site, where the lowest thawing degree days index (321 to 382°C·day) and the highest value of thermal conductivity (0.9 W m-1 K-1) was observed. The clearest influence of lithological conditions on active layer thickness was observed on the CALM-S grid. The site comprises a sandy Holocene marine terrace and muddy sand of the Whisky Bay Formation. Surveying using a manual probe, ground penetrating radar, and an electromagnetic conductivity meter clearly showed the effect of the lithological boundary on local variability of the active layer thickness.


2020 ◽  
Author(s):  
Julius Kunz ◽  
Christof Kneisel ◽  
Tobias Ullmann ◽  
Roland Baumhauer

<p>The Mackenzie-Delta Region is known for strong morphological activity in context of global warming and permafrost degradation, which reveals in a large number of retrogressive thaw slumps. These are frequently found along the shorelines of inland lakes and the coast; however, this geomorphological phenomenon also occurs at inland ​​streams and creeks of the Peel Plateau and the Richardson Mountains, located in the southwest of the delta. Here several active retrogressive thaw slumps are found of which some have reached an extent of several hectares, e.g. the mega slump at the Dempster Creek.</p><p>In this study we investigated a recent retrogressive thaw slump at the edge of the Richardson Mountains close to the Dempster Highway to determine the subsurface properties using non-invasive geophysical methods. We performed three-dimensional Ground Penetrating Radar (GPR) surveys, as well as quasi-three-dimensional Electrical Resistivity Tomography (ERT) surveys in order to investigate the subsurface characteristics adjacent to the retreating headwall of the slump. These measurements provide information on the topography of the permafrost table, ice content and/or water pathways on top, within or under the permafrost layer. Additionally, we performed manual measurements of the active layer thickness for validation of the geophysical models. The approach was complemented by the analysis of high-resolution photogrammetric digital elevation models (DEM) that were generated using in situ drone acquisitions.</p><p>The measured active layer depths show a strong influence of the relief and especially of small creeks on the permafrost table topography. Likely, this influence also is the primary trigger for the initial slump activity. In addition, the ERT measurements show strong variations of the electrical resistivity values in the upper few meters, which are indicative for heterogeneities, also within the ice-rich permafrost body. Especially noticeable is a layer of low resistivity values in an area adjacent to the slump headwall. This layer is found at depths between 4m to 7m, which approximately corresponds to the base of the headwall. Here, the low resistivity values could be indicative for an unfrozen or water-rich layer below the ice-rich permafrost. Consequently, this layer may have contributed to the initial formation of the slump and is important for the spatial extension of the slump.</p><p>These results present new insights into the subsurface of an area adjacent to an active retrogressive thaw slump and may contribute to a better understanding of slump development.</p>


2012 ◽  
Vol 13 (2) ◽  
pp. 521-538 ◽  
Author(s):  
Emanuel Dutra ◽  
Pedro Viterbo ◽  
Pedro M. A. Miranda ◽  
Gianpaolo Balsamo

Abstract Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. H9-H19 ◽  
Author(s):  
Albert Chen ◽  
Andrew D. Parsekian ◽  
Kevin Schaefer ◽  
Elchin Jafarov ◽  
Santosh Panda ◽  
...  

Active-layer thickness (ALT) is an important parameter for studying surface energy balance, ecosystems, and hydrologic processes in cold regions. We measured ALT along 10 routes with lengths ranging from 0.7 to 6.9 km located on the Alaska North Slope near Toolik Lake and the Happy Valley airstrip (between 68.475° and 69.150°N, and [Formula: see text] and [Formula: see text]). Using a ground-penetrating radar (GPR) system in a common-offset configuration, we measured the two-way traveltimes from the surface to the bottom of the active layer at the end of summer, when the thaw depth was greatest. We used 500 and 800 MHz antennas; the 500 MHz antenna provided suitable vertical resolution, while producing more unambiguous active-layer reflections in the presence of nonideal antenna coupling and active layer inhomogeneity. We derived ALT measurements and their uncertainties from GPR two-way traveltimes, with mechanical probing for velocity calibration. Using an empirical relationship between the wave velocity and soil volumetric water content (VWC), we found that the velocities were consistent with soil VWCs ranging from 0.46 to 0.63. In 31% of traces, the permafrost table horizon was identifiable, resulting in ALT measurements with uncertainties of generally less than 25%. The average ALT was 48.1 cm, with a standard deviation of 16.1 cm. We found distinct patterns of ALT spatial variability at different sites and different length scales. At some sites, the ALT at one point was effectively uncorrelated with ALT at other points separated by lag distances as small as tens of meters; for other sites, there was correlation at lag distances up to approximately 400 m. The ALT statistics were similar to nearby long-term in situ ALT measurements from the Circumpolar Active Layer Monitoring Network, through which yearly ALT measurements have been made since 1990.


2015 ◽  
Vol 8 (1) ◽  
pp. 715-759 ◽  
Author(s):  
S. Chadburn ◽  
E. Burke ◽  
R. Essery ◽  
J. Boike ◽  
M. Langer ◽  
...  

Abstract. It is important to correctly simulate permafrost in global climate models, since the stored carbon represents the source of a potentially important climate feedback. This carbon feedback depends on the physical state of the permafrost. We have therefore included improved physical permafrost processes in JULES, which is the land-surface scheme used in the Hadley Centre climate models. The thermal and hydraulic properties of the soil were modified to account for the presence of organic matter, and the insulating effects of a surface layer of moss were added, allowing for fractional moss cover. We also simulate a higher-resolution soil column and deeper soil, and include an additional thermal column at the base of the soil to represent bedrock. In addition, the snow scheme was improved to allow it to run with arbitrarily thin layers. Point-site simulations at Samoylov Island, Siberia, show that the model is now able to simulate soil temperatures and thaw depth much closer to the observations. The root mean square error for the near-surface soil temperatures reduces by approximately 30%, and the active layer thickness is reduced from being over 1 m too deep to within 0.1 m of the observed active layer thickness. All of the model improvements contribute to improving the simulations, with organic matter having the single greatest impact. A new method is used to estimate active layer depth more accurately using the fraction of unfrozen water. Soil hydrology and snow are investigated further by holding the soil moisture fixed and adjusting the parameters to make the soil moisture and snow density match better with observations. The root mean square error in near-surface soil temperatures is reduced by a further 20% as a result.


2015 ◽  
Vol 9 (2) ◽  
pp. 2301-2337 ◽  
Author(s):  
S. Peng ◽  
P. Ciais ◽  
G. Krinner ◽  
T. Wang ◽  
I. Gouttevin ◽  
...  

Abstract. Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and inter-annual time scales, the variability of Ts determines the active layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat, but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr−1. Most models show smaller increase in Ts with increasing depth. Air temperature (Ta) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61% of their differences in Ts trends, while trends of Ta only explain 5% of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr−1, mean ± SD) than the uncertainty of model structure (0.012 ± 0.001 °C yr−1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active layer thickness (ALT) is less than 3 m loss rate is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m, is estimated to be of −2.80 ± 0.67 million km2 °C−1. Finally, by using two long-term LWDR datasets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000. This corresponds to 9–18% degradation of the current permafrost area.


2015 ◽  
Vol 12 (14) ◽  
pp. 11797-11831 ◽  
Author(s):  
E. Godin ◽  
D. Fortier ◽  
E. Lévesque

Abstract. Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover), eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.


Sign in / Sign up

Export Citation Format

Share Document