Spatial distribution of groundwater-surface water connectivity in the Kosimegafan, north India

Author(s):  
Zafar Beg ◽  
Suneel Kumar Joshi ◽  
Kumar Gaurav ◽  
Sudhir Kumar

<p>We conducted a systematically integrated surface water and groundwater interaction study in the Kosimegafan in north India using the stable isotopes (δ<sup>18</sup>O and δ<sup>2</sup>H) of water and depth to water level data. In a field campaign in December 2019, we have collected a water sample from 65 different locations for isotopic analysis. This includes 21 samples from the groundwater and 44 from different surface water bodies (Kosi River-02, streams-09, waterlogged patches-29, and canal-04).</p><p>The δ<sup>18</sup>O and D-excess values of groundwater and waterlogged samples show marked spatial variation across the study area. Using a two-component mixing model, we estimate the fraction contribution of streams and rainwater in the groundwater and waterlogged patches. This shows a marked spatial and depth-related variability in stream water contribution to the groundwater recharge and varies from about 83% (maximum) at 6 m below ground level (bgl) to 45% (minimum) at 9 m bgl. We also analysed the spatial and temporal variation in groundwater levels from 1996 to 2017. During this period, the water level shows a significant variation from 1.1 to 7.8 m bgl. Further, using the water table fluctuation approach, we estimate the recharge rate. We found a higher recharge rate (22 mm/year) in the central part of the western lobe and northern part of the central lobe, and minimum (1 mm/year)in both the northern part of the western and southern part of the central lobe of the Kosi fan. This study provides new insight into the recharge processes in the study area.</p>

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 528 ◽  
Author(s):  
Fei Gao ◽  
Gary Feng ◽  
Ming Han ◽  
Padmanava Dash ◽  
Johnie Jenkins ◽  
...  

The groundwater level in the Big Sunflower River Watershed (BSRW) in the U.S. has declined significantly in the past 30 years. Therefore, it is imperative to assess surface water resources (SWR) availability in BSRW to mitigate groundwater use for irrigation. This research applied the coupled Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) to assess SWR in BSRW. This study aimed at: (1) Assessing the reliability of SWAT–MODFLOW in BSRW, (2) analyzing temporal and spatial variations of SWR, and (3) assessing the potential availability of SWR in BSRW. Calibration and validation results showed that SWAT–MODFLOW can well simulate streamflow and groundwater levels in BSRW. Our results showed that BSRW had lower average monthly total stream resources (MSR = 8.8 × 107 m3) in growing seasons than in non-growing seasons (MSR = 11.0 × 107 m3), and monthly pond resources (MPR from 30,418 to 30,494 m3) varied less than stream resources. The proportion of sub-basins in BSRW with stream water resources greater than 700 mm was 21% in dry years (229 to 994 mm), while this increased to 35% in normal years (296 to 1141 mm) and 57% in wet years (554 to 991 mm). The Water Stress Index (WSI) ranged from 0.4 to 2.1, revealing that most of the sub-basins in BSRW have net SWR available for irrigation. Our results suggested that surface water resources might be supplementary irrigation sources to mitigate the water resources scarcity in this region.


2020 ◽  
Vol 24 (12) ◽  
pp. 5713-5744
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope–stream connectivity controls runoff generation, during events and during baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow can not be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope–stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. As a first step, a new data analysis scheme was developed, separating the aspects of (a) response timing and (b) extent of water level change. This provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope–stream connectivity at the catchment scale. Stream water levels and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm, we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope–stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high; however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into the connectivity and event response of the corresponding headwater catchments. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


2020 ◽  
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope-stream connectivity controls runoff generation, both during events and baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow cannot be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope-stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. A newly developed data analysis scheme of separating the aspects of (a) response timing and (b) extent of water level change provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope-stream connectivity at the catchment scale. Stream- and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically-driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope-stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high, however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into catchment-scale connectivity and event response. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


2020 ◽  
pp. 61-78
Author(s):  
Mateja Jelovčan ◽  
Mojca Šraj

The Vipava Valley is a unique region in south-western Slovenia. In addition to surface water, groundwater is also important, although it is hidden from the eye. The paper presents an analysis of groundwater levels in piezometers in the Vipava Valley. The analysis was performed on 10 piezometers, which are still operating today, and includes a display of levels and basic statistics, correlations, the impact of distance from the Vipava riverbed, trends, and seasonality. According to the groundwater level, piezometers in the Vipava Valley can be divided into three groups. The first group with the highest levels includes piezometers Gradišče, Vipavski Križ, and Ajdovščina, the second group piezometers Prvačina, Šempeter, Volčja Draga, Renče, and Vrtojba, and the third group with the lowest groundwater levels includes the piezometers Miren and Orehovlje. The results of the analyses showed good or bad connections between groundwater levels in piezometers, as well as between groundwater levels and the Vipava River water level at various gauging stations. The fluctuation of the groundwater level is conditioned by the distance from the Vipava riverbed and the area’s geological or tectonic structure. An unambiguous trend of groundwater levels cannot be determined. The seasonality of groundwater level fluctuations is not pronounced, but the highest values of groundwater levels occur in autumn and winter, and the lowest in summer.


Author(s):  
ALEKSANDRA CZUCHAJ ◽  
FILIP WOLNY ◽  
MAREK MARCINIAK

The aim of the presented research was to analyze the relation between three variables: the daily sum of precipitation, the surface water level and the groundwater level in the Różany Strumień basin located in Poznań, Poland. The correlation coefficient for the subsequent lags for each pair of variables time series has been calculated. The delay with which waters of the basin respond to precipitation varies significantly. Generally, stronger response to rainfall is observed for surface water levels as opposed to groundwater levels.


2020 ◽  
Vol 8 (6) ◽  
pp. 4501-4503

Khapri watershed is mountainous region having average 2255 mm rainfall every year. In the last few months of hydrological year i.e. April & May, there is an acute shortage of drinking water. To overcome this short fall, it is necessary to manage natural watersheds available in the region. water harvesting is a system that collects rainwater from where it falls around its periphery rather than allowing it to go as runoff. The strategy of “Think Globally, Act Locally” should be used in this area for management of water. Local water that is rainwater stored using Rainwater Harvesting Structure and Conservation used optimally before it goes in drain or river.The subsurface reservoirs are very attractive and technically feasible alternatives for storing surplus monsoon runoff. But in the study region, this is not possible as there is a basalt rock. Recharging is not advisable as water table in post monsoon just touches ground level. So, Rainwater harvesting structures for direct use of water may be the possibly best solution.For community requirement rainwater may be stored in checkdams or depressed area naturally available. Construction of small barriers across small streams to check and store the running water also can be considered as water harvesting structure. This may fulfil the drinking water requirement of their cattles. Check dams in the watershed has been ascertain using Geospatial techniques and few of them verified by visiting the sites. In site visit it is found that open wells near the stream has water level above stream water level. At few places farming is done in check dam reservoir or in stream itself.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 173-176 ◽  
Author(s):  
Liesl Hill ◽  
Sebastian Jooste

With the increasing focus on environmental issues, the objective of this study is to evaluate the potential impact of contaminated sediments of the Blesbok Spruit near Witbank - which receives acid mine drainage (AMD) inter alia - on biota. Direct transfer of chemicals from sediments to organisms is considered to be a major route of exposure for many species, and therefore focusing attention on sediment contamination and highlighting the fact that sediments are an important resource. Acute toxicity tests were performed on Daphnia pulex using both extracted sediment interstitial water and surface water. Chemical analyses were also performed on the sediment, interstitial water and surface water samples. The toxicity results suggest that metal toxicity adds significantly to the toxicity of the stream water which is enhanced by the effect of pH. The pH of the stream and interstitial water was consistently below 4.5.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
C. Prakasam ◽  
R. Saravanan ◽  
M. K. Sharma ◽  
Varinder S. Kanwar

AbstractAs the surface water in northern India is the main water resource for regional economic and also supply for drinking and irrigation purposes. However, deficiency of water quality leads to serious water pollution in the Pandoh river basin (PRB). Therefore, the main objective of the present study is to evaluate the quality of surface water. With this objective, surface water samples were collected from the PRB of northern India, and analyzed for pH, EC, turbidity, alkalinity, total dissolved solids, and total hardness. Moreover, geographical information system (GIS) tools were used to prepare the geology, drainage pattern, and location maps of the study region. Surface water quality observed from the PRB has an alkaline nature with a moderately hard type. Further studies are encouraged to better understand the water quality in northern India.


Sign in / Sign up

Export Citation Format

Share Document