Climate change induced modifications of hydro-meteorological extreme events and their impacts on water resources for agriculture in the Mediterranean

Author(s):  
Athanasios Loukas

<p>It is common today to consider that climate is expected to change or even climate change is present and evident.  A changing climate leads to changes in the frequency, intensity, spatial extent, duration, and timing of climate extremes, and may result in unprecedented events. Changes in extremes of a climate variable are not always related in a simple way to changes in the mean of the same variable or a hydrological variable, and in some cases may be of opposite sign to a change in the mean of the variable.  Also, the changes vary from one geographical region to another.   In this review paper, examples of climate change impact studies on hydro-meteorological extremes, i.e. extreme precipitation, floods and droughts, in the Mediterranean region, are presented and discussed.  In this geographical area, agriculture is the main consumer of water, demanding 60-90% of the total water use. The impacts of the climate change induced modifications of hydro-meteorological extremes and water management practices on the availability of surface water and groundwater resources are also discussed.</p>

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


Author(s):  
P K Bhunya ◽  
Sanjay Kumar ◽  
Sunil Gurrapu ◽  
M K Bhuyan

In recent times, several studies focused on the global warming that may affect the hydrological cycle due to intensification of temporal and spatial variations in precipitation. Such climatic change is likely to impact significantly upon freshwater resources availability. In India, demand for water has already increased manifold over the years due to urbanization, agriculture expansion, increasing population, rapid industrialization and economic development. Numerous scientific studies also report increases in the intensity, duration, and spatial extents of floods, higher atmospheric temperatures, warmer sea, changes in precipitation patterns, and changing groundwater levels. This work briefly discusses about the present scenario regarding impact of climate change on water resources in India. Due to the insufficient resolution of climate models and their generally crude representation of sub-grid scale and convective processes, little confidence can be placed in any definite predictions of such effects, although a tendency for more heavy rainfall events seems likely, and a modest increase in frequency in floods. Thus to analyses this effect, this work considers real problems about the changing flood characteristics pattern in two river regions, and the effect of spatial and temporal pattern in rainfall. In addition to these, the work also examines the trend of groundwater level fluctuations in few blocks of Ganga–Yamuna and Sutlej-Yamuna Link interfluves region. As a whole, it examines the potential for sustainable development of surface water and groundwater resources within the constraints imposed by climate change.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1201 ◽  
Author(s):  
Pantelis Sidiropoulos ◽  
Georgios Tziatzios ◽  
Lampros Vasiliades ◽  
Nikitas Mylopoulos ◽  
Athanasios Loukas

Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for rivers, lakes, and wetlands and constitutes the main source of potable water. The need of aquifers simulation, taking into account water resources components at watershed level, is imperative for the choice of appropriate restoration management practices. An integrated water resources modeling approach, using hydrological modeling tools, is presented for assessing the nitrate fate and transport on an over-exploited aquifer with intensive and extensive agricultural activity under various operational strategies and future climate change scenarios. The results indicate that climate change affects nitrates concentration in groundwater, which is likely to be increased due to the depletion of the groundwater table and the decrease of groundwater enrichment in the future water balance. Application of operational agricultural management practices with the construction and use of water storage infrastructure tend to compensate the groundwater resources degradation due to climate change impacts.


2019 ◽  
Vol 12 ◽  
pp. 01001 ◽  
Author(s):  
D. Santillán ◽  
V. Sotés ◽  
A. Iglesias ◽  
L. Garrote

Effective adaptation of viticulture to climate change requires impact and response scenarios. Although climate and production impact scenarios are based on the evaluation of a spatially heterogeneous system, conventional response scenarios do not take into account the variation of the producers-climate interactions. These interactions are often extremely heterogeneous and unevenly distributed in space, leading to errors in the needs and adaptation plans, especially in large areas. Here we develop a novel framework for adaptation that considers the heterogeneity of the responses given by producers to climate, and applies the concept to adaptation of viticulture to climate change in the Mediterranean region. We use future climate scenarios at 0.5 ∘ resolution to estimate the adaptation of viticulture by the end of the 21st century. Results suggest that most of the Mediterranean region may urgently need adaptation plans, leading to potential opportunities. By incorporating spatially explicit information on the diversity of viticulture systems, management practices, and climate vulnerability, this approach may contribute to adaptation policy.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-jin Zhan ◽  
Lingjun Xia ◽  
Longfei Zhan ◽  
Yuanhao Wang

Trends in soil temperature are important but rarely reported indicators of climate change. Based on daily air and soil temperatures (depth: 0, 20, 80, and 320 cm) recorded at the Nanchang Weather Station (1961–2018), this study investigated the variation trend, abrupt changes, and years of anomalous annual and seasonal mean air and soil temperatures. The differences and relationships between annual air and soil temperatures were also analyzed. The results showed close correlations between air temperature and soil temperature at different depths. Annual and seasonal mean air and soil temperatures mainly displayed significant trends of increase over the past 58 years, although the rise of the mean air temperature and the mean soil temperature was asymmetric. The rates of increase in air temperature and soil temperature (depth: 0, 20, and 80 cm) were most obvious in spring; the most significant increase in soil temperature at the depth of 320 cm was in summer. Mean soil temperature displayed a decreasing trend with increasing soil depth in both spring and summer. Air temperature was lower than the soil temperature at depths of 0 and 20 cm but higher than the soil temperature at depths of 80 and 320 cm in spring and summer. Mean ground temperature had a rising trend with increasing soil depth in autumn and winter. Air temperature was lower than the soil temperature at all depths in autumn and winter. Years with anomalously low air temperature and soil temperature at depths of 0, 20, 80, and 320 cm were relatively consistent in winter. Years with anomalous air and soil temperatures (depths: 0, 20, and 80 cm) were generally consistent; however, the relationship between air temperature and soil temperature at 320 cm depth was less consistent. The findings provide a basis for understanding and assessing climate change impact on terrestrial ecosystems.


2011 ◽  
Vol 15 (12) ◽  
pp. 3861-3875 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


2013 ◽  
Vol 4 (1) ◽  
pp. 38-51 ◽  
Author(s):  
Samanpreet Kaur ◽  
Prit Pal Singh Lubana ◽  
Rajan Aggarwal

India is the largest groundwater user in the world, with an estimated usage of around 230 km3 per year. Agricultural demand for irrigation is already the single largest draw on India's water, yet estimates by the Ministry of Water Resources indicate that by the year 2050 irrigation needs will rise by 56%. From the climate change viewpoint, India's groundwater hotspots are concentrated in the seven states of Punjab, Rajasthan, Maharashtra, Karnataka, Gujarat, Andhra Pradesh, and Tamil Nadu. The state of Punjab, with only 1.57% of the total geographical area, is contributing 27–40% rice, 55–65% wheat and 18–25% cotton to the central pool since the last three decades. The dropping water levels in these regions are largely attributed to unsustainable consumption of groundwater for irrigation and other uses along with increased runoff and/or evapotranspiration, which climate change may further exacerbate. This paper presents an overview of current groundwater issues and examines the potential and negative effects of climate change on the groundwater resources in Punjab. Therefore, in this paper an attempt has been made to analyze the problem of declining groundwater resources and possible factors responsible for this and suggest suitable strategies for arresting over-exploitation and for sustainable agriculture in Punjab.


2019 ◽  
Vol 4 (1) ◽  
pp. 737-742
Author(s):  
R.P. Mahaliyanaarachchi ◽  
M.S. Elapata ◽  
M. Esham ◽  
B.C.H. Madhuwanthi

AbstractThe global climate change has become one of the imperative issue for the smallholder dominated agriculture and tourism sectors in Sri Lanka. This study investigated the perception of farmers on climate change and the potential of agritourism as a sustainable adaptation option to mitigate the negative impacts of climate change in both tourism and agricultural sectors. The study was carried out in the low country dry zone (LCDZ) and the upcountry wet zone (UPWZ) of Sri Lanka. A survey strategy followed by structured and unstructured interviews were undertaken to collect the data. The sample was composed of 100 farmers each from the UPWZ and LCDZ respectively. The study revealed that there had been climate extremes in both climatic zones in terms of high rainfall and longer dry spells. Thus, it was important for the farmers to have necessary knowledge and skills on different diversification techniques related to crop-production, integrated farming systems and climate resilient production which are economical and mitigate the adverse climatic effects. However, the results revealed that the farmers have altered the cropping patterns and crop management practices rather than adopting entrepreneurial activities like agritourism. Lack of awareness of agritourism within the farming community is the main reason for farmers not contemplating this important diversification option. The results indicate that a significant number of farmers showed interest in considering agritourism as an option to mitigate climate change. It is important to educate farmers on diversification options.


2021 ◽  
Vol 49 (1) ◽  
pp. 12218
Author(s):  
Kaouther MECHERGUI ◽  
Wahbi JAOUADI ◽  
Amal S. ALTAMIMI ◽  
Souheila NAGHMOUCHI ◽  
Youssef AMMARI

Climate change represents an important challenge for forest management and the silviculture of stands and it is known that climate change will have complex effects on cork oak forest ecosystems. North Africa and the Mediterranean basin are especially vulnerable to climate change. Under the effect of climate change, cork oak will disappear from a large area in the future, and the rest will migrate to higher altitudes and latitudes. This study aimed to evaluate the effect of climate change on the spatial distribution of Quercus suber L. and cork production in the Mediterranean area, and the risk of its exclusion by the Aleppo pine (Pinus halepensis Mill.) expansion. The literature review showed that up to 40% of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and the southern Iberian Peninsula. Temperature directly influences atmospheric evaporative demand and should affect cork productivity. Precipitation is the main factor that positively influences cork growth and several authors have confirmed the negative effect of drought on this growth. Currently, cork oak habitats are colonized in several places mainly by the Aleppo pine. Under climate change, Aleppo pine is projected to occupy higher altitude sites and several authors have predicted that current and future global warming will have a positive influence on Aleppo pine growth in wet sites. In the future and under climate change, there is a strong possibility that the Aleppo pine will colonize cork oak habitat. Finally, we proposed management practices to protect cork oak against climate change and Aleppo pine expansion.


Sign in / Sign up

Export Citation Format

Share Document