Advancements in the mesoscale Hydrologic Model at the global scale

Author(s):  
Oldrich Rakovec ◽  
Maren Kaluza ◽  
Rohini Kumar ◽  
Robert Schweppe ◽  
Pallav Shrestha ◽  
...  

<p>This study synthesizes the advancements made in the setup of the mesoscale Hydrologic Model (mHM; [1,2,3]) at the global scale. Underlying vegetation and geophysical characteristics are provided at ≈200m, while the mHM simulates water fluxes and states between 10 km and 100 km spatial resolution. The meteorologic forcing data are derived from the readily available, near-real time ERA-5 dataset [4]. The total of 50 global parameters of the Multiscale Parameter Regionalization (MPR) are constrained in two modes: (1) streamflow only across 3054 gauges, and (2) streamflow across 3054 gauges and simultaneously with FLUXNET ET and GRACE TWSA across 258 domains consisting of ≈10° x 10° blocks. Model performance is finally evaluated against a range of observed and reference data since 1985. </p><p>The single best parameter set evaluated across 3054 GRDC global streamflow station yield median performance of 0.47 daily KGE (0.55 monthly KGE). This performance varies strongly between continents. For example, median daily KGE across Europe is around 0.55 (N basins=972) and across northern America around 0.5 (N basins=1264). So far, the worst model performance is observed across Africa, with median KGE of 0 (N basins=202), using the same globally constrained parameter set. The deterioration of model performance based on seamless parameterization can be explained by the quality of the underlying data, which corresponds to areas, where water balance closure error is the biggest. Additionally, missed model processes play an important role as well. Finally, there remains a large gap between the onsite calibrations and global calibrations and ongoing research is being done to narrow down these differences. This work is the fundament for building skillful global seasonal forecasting system ULYSSES [6], which provides hindcasts and operational seasonal forecasts of hydrologic variables using four state of the art hydrologic/land surface models with lead time of 6 months.</p><ul><li>[1] https://www.ufz.de/mhm</li> <li>[2] https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR007327</li> <li>[3] https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012WR012195</li> <li>[4] https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803</li> <li>[5] https://www.ufz.de/ulysses</li> </ul>

2015 ◽  
Vol 6 (1) ◽  
pp. 217-265 ◽  
Author(s):  
M. R. North ◽  
G. P. Petropoulos ◽  
G. Ireland ◽  
J. P. McCalmont

Abstract. In this present study the ability of the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model in estimating key parameters characterising land surface interactions was evaluated. Specifically, SimSphere's performance in predicting Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H) and Air Temperature (Tair) at 1.3 and 50 m was examined. Model simulations were validated by ground-based measurements of the corresponding parameters for a total of 70 days of the year 2011 from 7 CarboEurope network sites. These included a variety of biomes, environmental and climatic conditions in the models evaluation. Overall, model performance can largely be described as satisfactory for most of the experimental sites and evaluated parameters. For all model parameters compared, predicted H fluxes consistently obtained the highest agreement to the in-situ data in all ecosystems, with an average RMSD of 55.36 W m−2. LE fluxes and Rnet also agreed well with the in-situ data with RSMDs of 62.75 and 64.65 W m−2 respectively. A good agreement between modelled and measured LE and H fluxes was found, especially for smoothed daily flux trends. For both Tair 1.3 m and Tair 50 m a mean RMSD of 4.14 and 3.54 °C was reported respectively. This work presents the first all-inclusive evaluation of SimSphere, particularly so in a European setting. Results of this study contribute decisively towards obtaining a better understanding of the model's structure and its correspondence to the real world system. Findings also further establish the model's capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of the model worldwide, including ongoing research by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2017 ◽  
Vol 18 (3) ◽  
pp. 897-915 ◽  
Author(s):  
Jennifer L. Jefferson ◽  
Reed M. Maxwell ◽  
Paul G. Constantine

Abstract Land surface models, like the Common Land Model component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California, Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO2 Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>The skill of seasonal hydro-meteorological forecasts with a lead time of up to six months is currently limited, since they frequently exhibit random but also systematic errors. Bias correction algorithms can be applied and provide an effective approach in removing historical biases relative to observations. Systematic errors in hydrology model outputs can be consequence of different sources: i) errors in meteorological data used as input data, ii) errors in the hydrological model response to climate forcings, iii) unknown/unobservable internal states and iv) errors in the model parameterizations, also due to unresolved subgrid scale variability.</p><p>Normally, bias correction techniques are used to correct meteorological, e.g. precipitation data, provided by climate models. Only few studies are available applying these techniques to hydrological model outputs. Standard bias correction techniques used in literature can be classified into scaling-, and distributional-based methods. The former consists of using multiplicative or additive scaling factors to correct the modeled simulations, while the later methods are quantile mapping techniques that fit the distribution of the simulation to fit to the observations. In this study, the impact of different bias correction techniques on the seasonal discharge forecasts skill is assessed.</p><p>As a case study, a seasonal discharge forecasting system developed for the Danube basin upstream of Vienna, is used. The studied basin covers an area of around 100 000 km<sup>2</sup> and is subdivided in 65 subbasins, 55 of them gauged with a long historical record of observed discharge. The forecast system uses the calibrated hydrological model, COSERO, which is fed with an ensemble of seasonal temperature and precipitation forecasts. The output of the model provides an ensemble of seasonal discharge forecasts for each of the (gauged) subbasins. Seasonal meteorological forecasts for the past (hindcast), together with historical discharge observations, allow to assess the quality of the seasonal discharge forecasting system, also including the effects of different bias correction methods. The corrections applied to the discharge simulations allow to eliminate potential systematic errors between the modeled and observed values.</p><p>Our findings generally suggest that the quality of the seasonal forecasts improve when applying bias correction. Compared to simpler methods, which use additive or multiplicative scaling factors, quantile mapping techniques tend to be more appropriate in removing errors in the ensemble seasonal forecasts.</p>


2021 ◽  
Author(s):  
Jan De Pue ◽  
José Miguel Barrios ◽  
Liyang Liu ◽  
Philippe Ciais ◽  
Alirio Arboleda ◽  
...  

<p>Over the past decades, land surface models have evolved into advanced tools which comprise detailed process descriptions and interactions at a broad range of scales. One of the challenges in these models is the accurate simulation of plant phenology. It is a key element at the nexus of the simulated hydrological and carbon cycle, where the leaf area index (LAI) plays a major role in flux partitioning, water balance and gross primary production.<br>In this study, three well-established models are used to simulate the intrinsically coupled fluxes of water, energy and carbon from terrestrial vegetation. ORCHIDEE, ISBA-CC and the LSA-SAF algorithm each have a different approach to represent plant phenology. Whereas ISBA-CC has a fairly simple biomass allocation scheme to represent the phenological cycle, ORCHIDEE relies on a dedicated phenology module, and LSA-SAF is driven by remote-sensed forcing variables, such as LAI. Simulations were performed for a wide range of hydro-climatic biomes and plant functional types at field scale. The simulated fluxes were validated using eddy-covariance measurements, and the simulated phenology was compared to remote-sensed observations.<br>These models are tools to extrapolate leaf-level processes to global scale climate predictions. The origin of the parameters controlling phenology-induced variability in these models ranges from plant-scale lab experiments to global-scale calibration. The aim of this study is to investigate the key parameters controlling phenology-induced variability in these models.</p>


2008 ◽  
Vol 35 (11) ◽  
Author(s):  
Lindsey E. Gulden ◽  
Enrique Rosero ◽  
Zong-Liang Yang ◽  
Thorsten Wagener ◽  
Guo-Yue Niu

2020 ◽  
Vol 14 (2) ◽  
pp. 497-519 ◽  
Author(s):  
Jaroslav Obu ◽  
Sebastian Westermann ◽  
Gonçalo Vieira ◽  
Andrey Abramov ◽  
Megan Ruby Balks ◽  
...  

Abstract. Permafrost is present within almost all of the Antarctic's ice-free areas, but little is known about spatial variations in permafrost temperatures except for a few areas with established ground temperature measurements. We modelled a temperature at the top of the permafrost (TTOP) for all the ice-free areas of the Antarctic mainland and Antarctic islands at 1 km2 resolution during 2000–2017. The model was driven by remotely sensed land surface temperatures and downscaled ERA-Interim climate reanalysis data, and subgrid permafrost variability was simulated by variable snow cover. The results were validated against in situ-measured ground temperatures from 40 permafrost boreholes, and the resulting root-mean-square error was 1.9 ∘C. The lowest near-surface permafrost temperature of −36 ∘C was modelled at Mount Markham in the Queen Elizabeth Range in the Transantarctic Mountains. This is the lowest permafrost temperature on Earth, according to global-scale modelling results. The temperatures were most commonly modelled between −23 and −18 ∘C for mountainous areas rising above the Antarctic Ice Sheet and between −14 and −8 ∘C for coastal areas. The model performance was good where snow conditions were modelled realistically, but errors of up to 4 ∘C occurred at sites with strong wind-driven redistribution of snow.


Geosciences ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 364
Author(s):  
Seyed Ghaneeizad ◽  
Athanasios Papanicolaou ◽  
Benjamin Abban ◽  
Christopher Wilson ◽  
Christos Giannopoulos ◽  
...  

Previous land surface modeling efforts to predict and understand water budgets in the U.S. Southeast for soil water management have struggled to characterize parts of the region due to an extensive presence of fragipan soils for which current calibration approaches are not adept at handling. This study presents a physically based approach for calibrating fragipan-dominated regions based on the “effective” soil moisture capacity concept, which accounts for the dynamic perched saturation zone effects created by the low hydraulic capacities of the fragipan layers. The approach is applied to the Variable Infiltration Capacity model to develop a hydrologic model of the Obion River Watershed (ORW), TN, which has extensive fragipan coverage. Model calibration was performed using observed streamflow data, as well as evapotranspiration and soil moisture data, to ensure correct partitioning of surface and subsurface fluxes. Estimated Nash-Sutcliffe coefficients for the various sub-drainage areas within ORW were all greater than 0.65, indicating good model performance. The model results suggest that ORW has a high responsivity and high resilience. Despite forecasted temperature increases, the simulation results suggest that water budget trends in the ORW are unlikely to change significantly in the near future up to 2050 due to sufficient precipitation amounts.


2020 ◽  
Vol 6 (15) ◽  
pp. eaay4444 ◽  
Author(s):  
Ernest N. Koffi ◽  
Peter Bergamaschi ◽  
Romain Alkama ◽  
Alessandro Cescatti

Wetlands are a major source of methane (CH4) and contribute between 30 and 40% to the total CH4 emissions. Wetland CH4 emissions depend on temperature, water table depth, and both the quantity and quality of organic matter. Global warming will affect these three drivers of methanogenesis, raising questions about the feedbacks between natural methane production and climate change. Until present the large-scale response of wetland CH4 emissions to climate has been investigated with land-surface models that have produced contrasting results. Here, we produce a novel global estimate of wetland methane emissions based on atmospheric inverse modeling of CH4 fluxes and observed temperature and precipitation. Our data-driven model suggests that by 2100, current emissions may increase by 50% to 80%, which is within the range of 50% and 150% reported in previous studies. This finding highlights the importance of limiting global warming below 2°C to avoid substantial climate feedbacks driven by methane emissions from natural wetlands.


2021 ◽  
Author(s):  
Joe McNorton ◽  
Nicolas Bousserez ◽  
Gabriele Arduini ◽  
Anna Agusti-Panareda ◽  
Gianpaolo Balsamo ◽  
...  

<p>Urban areas make up only a small fraction of the Earth’s surface; however, they are home to over 50% of the global population. Accurate numerical weather prediction (NWP) forecasts in these areas offer clear societal benefits; however, land-atmosphere interactions are significantly different between urban and non-urban environments. Forecasting urban weather requires higher model resolution than the size of the urban domain, which is often achievable by regional but not global NWP models. Here we present the preliminary implementation of an urban scheme within the land surface component of the global Integrated Forecasting System (IFS), at recently developed ~1km horizontal resolution. We evaluate the representation error of fluxes and NWP variables at coarser resolutions (~9 km and ~31 km), using the high resolution as truth. We evaluate the feasibility of the scheme and its urban representation at ~1km scales. Availability of urban mapping data limit the affordable complexity of the global scheme; however, using generalisations model performance is improved over urban sites, even adopting simple schemes, and the modelled Urban Heat Island effects show broad agreement with observations. Several directions for future work are explored including a more complex urban representation, restructuring of the urban tiling and the introduction of an urban emissions model for trace gas emissions.<strong> </strong></p>


Sign in / Sign up

Export Citation Format

Share Document