Late-Holocene climate variability of coastal East Asia reconstructed from the Yongneup fen in central Korea

Author(s):  
Jinheum Park ◽  
Qiuhong Jin ◽  
Jieun Choi ◽  
Jungjae Park

<p>This study presents a reconstruction of climate change in central Korea during the last 3,000 years, using a core from a montane peatland of Yongneup. Multiple proxies of pollen, macrocharcoal, and geochemistry were analysed to provide three findings as follows: First, abrupt climate events at ca. 2.8 and 2.3 ka BP possibly accompanied dry summer as well as cold and arid winter seasons on the Korean peninsula. The first macrocharcoal analysis on the peninsula indicates increased wildfire activities during these dry periods. Next, a weakening of summer monsoon during El Niño-like phases was clearly found during the late Holocene. This confirms previous findings of a dominant oceanic influence on hydroclimate variability on the Korean peninsula. Finally, changes in temperature were likely synchronous with a global trend, indicated by the total organic content (TOC) and arboreal pollen percentages. Due to its location at a high-altitude, the environment of Yongneup has possibly sensitively responded to fluctuations in temperature. Altogether, these findings suggest that temperature and precipitation changes on the Korean peninsula have been separately influenced by insolation and oceanic circulations, respectively.</p>

2018 ◽  
Vol 229 ◽  
pp. 02017
Author(s):  
Aulia N. Khoir ◽  
R. Mamlu’atur ◽  
Agus Safril ◽  
Akhmad Fadholi

Climate change due to an increase in greenhouse gas concentrations has led to changes in extreme climate events. IPCC 2007 already predicted that average global temperatures would reach 0.74⁰ C in the last 100 years (1906-2005). A study on the temperature index trends and extreme precipitation in the period of 1986-2014 in Jakarta are represented by 5 weather stations. Daily of maximum temperature, minimum temperature, and precipitation data are calculated using RClimDex Software so that temperature and rainfall index data are obtained. The indexes are extreme climate indexes defined by ETCCDMI (Expert Team for Climate Change Detection Monitoring and Indices). The indexes consist of TN10p, TN90p, TX10p, TX90p, TNn, TNx, TXn, TXx, DTR, RX1day, RX5day, RCPTOT, CDD, CWD, and R95p. The purpose of this research is to know the change of temperature and precipitation characteristics from observation result in Jakarta by using index calculation. The results show that Jakarta has number of hot days according to the trends which are generally increasing. It can cause the temperature in Jakarta to get hotter. However, for the rainfall, the upward or downward trend is not significant, so it can be said there is no change in precipitation in Jakarta during 1986-2014.


2011 ◽  
Vol 91 (2) ◽  
pp. 51-70
Author(s):  
Vladan Ducic ◽  
Dragan Buric ◽  
Jelena Lukovic ◽  
Gorica Stanojevic

The global warming and climate change are the actual and challenging topics. Recently there is one question, frequently asked: whether today's climate is changing? The studies of this issues are mainly related to the two the most important climatic elements - air temperature and precipitation amounts. We have done research about temperature variability for Montenegro and the main aim of this paper is analysis precipitation changes for station Podgorica (Montenegro) in the period of sistematic observation - are there changes, to what extent and whether they are significant. According to the results, acumulated precipitation do not show significant changes for annual and seasonal values in the period 1951-2010. The interannual variations of the precipitation (which are characterictic for this climate element) do not show increases in recent times. The component trend shows some changes, but statisticaly insignigficant. The previous results for precipitation conditions in Podgorica are not in accordance with the concept of Intergovermental Panel on Climate Change (IPCC) which predicted a general decerease in precipitation and increase variability on this area.


2006 ◽  
Vol 6 (4) ◽  
pp. 863-881 ◽  
Author(s):  
A. P. van Ulden ◽  
G. J. van Oldenborgh

Abstract. The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also significantly in the simulated warming of cold winter months. Finally, the models simulate rather different changes in North Atlantic sea surface temperature, which is likely to impact on changes in temperature and precipitation. These results imply that several important aspects of climate change in Central Europe are highly uncertain. Other aspects of the simulated climate change appear to be more robust. All models simulate significant warming all year round and an increase in precipitation in the winter half-year.


2021 ◽  
Author(s):  
Kai Chang ◽  
Yixia Nie

Abstract We examines the effects of climate change on the financing cost of heavy-pollution firms using firm-level panel data analysis. The empirical results demonstrate that the annual temperature and precipitation changes can significantly promote the financing costs of heavy-pollution firms, the positive impacts of annual temperature and precipitation changes on the financing costs of large, medium and small heavy-pollution firms has shown a gradual weakening trend with an increase of firm size, and the positive effects of annual temperature and precipitation changes on the financing costs of younger and older heavy-pollution firms has shown a decline trend with an increase of firm age. The evidences confirms that the impact of climate change on the financing costs of heavy-pollution firms exhibit a significant firm size and age discrimination of financing behaviors. Government decision-makers have to identify and optimize the transmission effect of climate change response on financing behavior decisions of heavy-pollution industries, financial institutions alleviate financial conflicts and credit discrimination behaviors and optimize the efficiency of financial resource allocation. Firms’ executives correct climate change strategy, optimize the climate- relevant operation, investment and financing activities, and alleviate unfavorable influences of climate changes for heavy-pollution firms.


2008 ◽  
Vol 21 (7) ◽  
pp. 1589-1604 ◽  
Author(s):  
Filippo Giorgi

Abstract Simple equations are developed to express regional climate changes for the twenty-first century and associated uncertainty in terms of the global temperature change (GTC) without a dependence on the underlying emission pathways. The equations are applied to regional temperature and precipitation changes over different regions of the world, and relevant parameters are calculated using the latest multimodel ensemble of global climate change simulations. Examples are also shown of how to use the equations to develop probability density functions (PDFs) of regional climate change based on PDFs of GTC. The main advantage of these equations is that they can be used to estimate regional changes from GTC obtained either from simple and intermediate complexity models or from target CO2 stabilization concentrations.


Author(s):  
Tarek Bouregaa ◽  
Mohamed Fenni

Purpose – The purpose of this paper is to assess the inter-seasonal temperature and precipitation changes in Setif high plains region under future greenhouse gas emissions, by using four general circulation models (GCMs) output data between three time slices of twenty-first century. The objective is to show the vulnerability of the region and the strategy of adaptation to these changes. Design/methodology/approach – This study investigates likely changes in seasonal temperature and precipitation over Setif high plains region (North East of Algeria) between three time slices: 2025, 2050 and 2075. The projections are based on the SRES A2 and B2 scenarios. MAGICC-SCENGEN 5.3v.2 was used as a tool for downscaling the four selected GCMs output data. The vulnerability of the region, coupled with the possible impacts climate change, stresses the need for adaptive strategies in key sectors in the region for the long term sustainable development. Findings – The results for change in seasonal temperature indicate a general warming under the two scenarios till the year 2075.The results of GFDLCM21 and GFDLCM20 show a general reduction of spring and autumn precipitations and an increase in winter and summer. BCCRBCM2 predicts a decrease in winter, spring and summer precipitations and an increase in autumn. Climate change, as well as increases in climate variability, will alter precipitation, temperature and evaporation regimes, and will increase the vulnerability of Setif high plains to changes in hydrological cycles. Climate and weather forecasting coupled with biotechnological advances in improving crop yields and tolerances to aridity, is likely to bring significant payoffs for strategy of adaptation in the field of agricultural water management. Originality/value – This work is one of the first to study inter-seasonal temperature and precipitation changes under global warming over the region, and suggest some adaptive strategies to limit the effect of these changes.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1664
Author(s):  
Yuhang Han ◽  
Bin Liu ◽  
Dan Xu ◽  
Chaoguo Yuan ◽  
Yanan Xu ◽  
...  

The impact of global climate change on the temporal and spatial variations of precipitation is significant. In this study, daily temperature and precipitation data from 258 meteorological stations in the Haihe River Basin, for the period 1960–2020, were used to determine the trend and significance of temperature and precipitation changes at interannual and interseasonal scales. The Mann–Kendall test and Spearman’s correlation analysis were employed, and significant change trends and correlations were determined. At more than 90% of the selected stations, the results showed a significant increase in temperature, at both interannual and interseasonal scales, and the increasing trend was more significant in spring than in other seasons. Precipitation predominantly showed a decreasing trend at an interannual scale; however, the change trend was not significant. In terms of the interseasonal scale, the precipitation changes in spring and autumn showed an overall increasing trend, those in summer showed a 1:1 distribution ratio of increasing and decreasing trends, and those in winter showed an overall decreasing trend. Furthermore, the Spearman’s correlation analysis showed a negative correlation between temperature and precipitation in the entire Haihe River Basin, at both interannual and interseasonal scales; however, most of the correlations were weak.


2020 ◽  
Author(s):  
Enrico Arnone ◽  
Nick Pepin ◽  
Elisa Palazzi ◽  
Sven Kotlarski ◽  
Silvia Terzago ◽  
...  

<p>Mountain and high elevation regions often show distinct climate trends in temperature and precipitation, which can contrast those of adjacent lowland regions. In the context of temperature, this phenomenon is known as elevation-dependent warming (EDW). Past temperature trends can increase with elevation, but this is not always so, and they may peak in a critical elevation band, or show more complex elevation profiles. This is controlled by a variety of mechanisms which may be responsible for the observed patterns, including snow albedo feedback, vegetation change, cloud and moisture patterns, aerosol forcing and their interactions.</p><p>We here present a literature-based meta-analysis of elevation profiles in recent warming rates and, in a more general context, temperature change in mountain regions around the globe. For the recent historical period (~1960-2010) we find that when comparing like with like (i.e. high elevation regions with adjacent low elevation regions) warming rates are mostly stronger at higher elevations. Warming rates have also increased over time, with more recent decades showing stronger warming.<span> </span>On a global scale there is no significant difference between mean warming rates in mountains and in other areas. Thus, elevation-dependency within regions can be masked by differences in geographical location in global meta-analyses. Although there have been far fewer studies on vertical profiles of precipitation changes, we extend our meta-analysis to consider this parameter,<span>  </span>where information is available.</p><p>In addition to the meta-analysis, we compare past temperature and precipitation changes in mountain and lowland regions using global gridded observation-based and reanalysis datasets (e.g. CRU, ERA5, NCEP2) and global climate model simulations (CMIP5). Despite the uncertainties of these datasets (e.g. inhomogeneous underlying station coverage and related interpolation errors, biases, coarse spatial resolution), they allow us to compare different mountain regions globally with the same level of accuracy. There are only a few mountain areas that show distinct differences when their temperature trends are compared with lowland surroundings, but patterns vary by dataset and region. We also explore different extensions of adjacent lowlands, which may influence the quantification of differences in temperature and precipitation trends at high and low elevation.</p><p>This historical assessment is completed by an analysis of model projections (CMIP5) for studying the expected future evolution of climate change in mountains and contrasts to adjacent lowlands</p>


2012 ◽  
Vol 25 (9) ◽  
pp. 3117-3144 ◽  
Author(s):  
Katja Frieler ◽  
Malte Meinshausen ◽  
Matthias Mengel ◽  
Nadine Braun ◽  
William Hare

A new approach to probabilistic projections of regional climate change is introduced. It builds on the already established quasi-linear relation between global-mean temperature and regional climate change found in atmosphere–ocean general circulation models (AOGCMs). The new approach simultaneously 1) takes correlations between temperature- and precipitation-related uncertainty distributions into account, 2) enables the inclusion of predictors other than global-mean temperature, and 3) checks for the interscenario and interrun variability of the scaling relationships. This study tests the effectiveness of SOx and black carbon emissions and greenhouse gas forcings as additional predictors of precipitation changes. The future precipitation response is found to deviate substantially from the linear relationship with global-mean temperature change in some regions; thereby, the two main limitations of a simple linear scaling approach, namely having to rely on exogenous aerosol experiments (or ignoring their regional effect), and ignoring changes in scaling coefficients when approaching equilibrium conditions, are addressed. The additional predictors can markedly improve the emulation of AOGCM simulations. In some regions, variations in hydrological sensitivity (the percentage change of precipitation per degree of warming) across different scenarios can be reduced by more than 50%. Coupled to probabilistic projections of global-mean temperatures and greenhouse gas forcings, bidimensional distributions of regional temperature and precipitation changes accounting for multiple uncertainties are derived. Based on 20 Fourth Assessment Report AOGCMs (AR4 AOGCMs), probabilistic projections are provided for two representative concentration pathway (RCP) scenarios and 31 world regions (online database at www.pik-potsdam.de/primap/regional_temp_and_precip ). As an example application of the projections for climate adaptation and vulnerability studies, future changes in the surface mass balance of the Greenland Ice Sheet are computed.


Sign in / Sign up

Export Citation Format

Share Document