scholarly journals The Impact of Climate Change On Financing Cost of Heavy-Pollution Firms in China

Author(s):  
Kai Chang ◽  
Yixia Nie

Abstract We examines the effects of climate change on the financing cost of heavy-pollution firms using firm-level panel data analysis. The empirical results demonstrate that the annual temperature and precipitation changes can significantly promote the financing costs of heavy-pollution firms, the positive impacts of annual temperature and precipitation changes on the financing costs of large, medium and small heavy-pollution firms has shown a gradual weakening trend with an increase of firm size, and the positive effects of annual temperature and precipitation changes on the financing costs of younger and older heavy-pollution firms has shown a decline trend with an increase of firm age. The evidences confirms that the impact of climate change on the financing costs of heavy-pollution firms exhibit a significant firm size and age discrimination of financing behaviors. Government decision-makers have to identify and optimize the transmission effect of climate change response on financing behavior decisions of heavy-pollution industries, financial institutions alleviate financial conflicts and credit discrimination behaviors and optimize the efficiency of financial resource allocation. Firms’ executives correct climate change strategy, optimize the climate- relevant operation, investment and financing activities, and alleviate unfavorable influences of climate changes for heavy-pollution firms.

Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2018 ◽  
Vol 9 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mirko Knežević ◽  
Ljubomir Zivotić ◽  
Nataša Čereković ◽  
Ana Topalović ◽  
Nikola Koković ◽  
...  

Abstract The impact of climate change on potato cultivation in Montenegro was assessed. Three scenarios (A1B, A1Bs and A2) for 2001–2030, 2071–2100 and 2071–2100, respectively, were generated by a regional climate model and compared with the baseline period 1961–1990. The results indicated an increase of temperature during the summer season from 1.3 to 4.8 °C in the mountain region and from 1 to 3.4 °C in the coastal zone. The precipitation decreased between 5 and 50% depending on the scenario, region and season. The changes in temperature and precipitation influenced phenology, yield and water needs. The impact was more pronounced in the coastal areas than in the mountain regions. The growing season was shortened 13.6, 22.9 and 29.7 days for A1B, A1Bs and A2, respectively. The increase of irrigation requirement was 4.0, 19.5 and 7.3 mm for A1B, A1Bs and A2, respectively. For the baseline conditions, yield reduction under rainfed cultivation was lower than 30%. For A1B, A1Bs and A2 scenarios, yield reductions were 31.0 ± 8.2, 36.3 ± 11.6 and 34.1 ± 10.9%, respectively. Possible adaptation measures include shifting of production to the mountain (colder) areas and irrigation application. Rainfed cultivation remains a viable solution when the anticipation of sowing is adopted.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


Author(s):  
K. Nivedita Priyadarshini ◽  
S. A. Rahaman ◽  
S. Nithesh Nirmal ◽  
R. Jegankumar ◽  
P. Masilamani

<p><strong>Abstract.</strong> Climate change impacts on watershed ecosystems and hydrologic processes are complex. The key significant parameters responsible for balancing the watershed ecosystems are temperature and rainfall. Though these parameters are uncertain, they play a prime role in the projections of dimensional climate change studies. The impact of climate change is more dependent on temperature and precipitation which contributes at a larger magnitude for characterising global warming issues. This paper aims to forecast the variations of temperature and precipitation during the period of 2020&amp;ndash;2050 for the northern part of Thenpennar sub basin. This study is modelled using SWAT (Soil and Water Assessment Tool) &amp;ndash; a scale model developed to predict the impact of changes that occurs in land, soil and water over a period of time. This study is validated using the base period from 1980&amp;ndash;2000 which shows the distribution of rainfall and temperature among 38 watersheds. The results from this study show that there is a decrease in the rainfall for a maximum of about 20% in the month of December during the predicted period of 2020 and 2050. This study assesses the possible adverse impact of climate change on temperature and precipitation of Thenpennai sub-basin. This kind of predictions will help the government agencies, rulers and decision makers in policy making and implementing the adaptation strategies for the changing climatic conditions.</p>


2020 ◽  
Author(s):  
Francisco J M Costa ◽  
Fabien Forge ◽  
Jason Garred ◽  
João Paulo Pessoa

We investigate the extent to which climate change will result in insurable and uninsurable losses for farmers in India. Shifts in the distributions of temperature and precipitation may increase the volatility of farmers' yields, leading to rising but insurable risk, and/or reduce mean yields and thus cause permanent reductions in the returns to farming. We use a multi-run climate model to predict the future distribution of yields at the district level for sixteen major crops. For the average district, we project a sharp decline in mean agricultural revenue, but relatively small shifts in volatility. This is because weather draws resulting in extremely low agricultural revenue -- what had once been 1-in-100-year events -- are predicted to become the norm by the end of the century, implying substantial uninsurable losses from the changing climate.


2007 ◽  
Vol 97 (1) ◽  
pp. 354-385 ◽  
Author(s):  
Olivier Deschênes ◽  
Michael Greenstone

This paper measures the economic impact of climate change on US agricultural land by estimating the effect of random year-to-year variation in temperature and precipitation on agricultural profits. The preferred estimates indicate that climate change will increase annual profits by $1.3 billion in 2002 dollars (2002$) or 4 percent. This estimate is robust to numerous specification checks and relatively precise, so large negative or positive effects are unlikely. We also find the hedonic approach—which is the standard in the previous literature—to be unreliable because it produces estimates that are extremely sensitive to seemingly minor choices about control variables, sample, and weighting. (JEL L25, Q12, Q51, Q54)


2018 ◽  
Vol 63 (03) ◽  
pp. 535-553 ◽  
Author(s):  
DAN WANG ◽  
YU HAO ◽  
JIANPEI WANG

Climate change is attracting increasing attention from the international community. To assess the impact of climate change on China’s rice production, this paper re-organizes the main rice-producing areas by adding up the annual production of the provincial level regions between 1979 and 2011, utilizes Cobb–Douglas function using daily weather data over the whole growing season. Our analysis of the panel data shows that minimum temperatures (Tmin), maximum temperatures (Tmax), temperature difference (TD) and precipitation (RP) are the four key climate determinants of rice production in China. Among these, temperature difference is surprisingly significant and all except maximum temperatures have positive effects. However, because the actual minimum temperatures and precipitation in China’s main rice-producing areas declined while the maximum temperatures and the temperature difference increased during our sample period, climate change has actually provided a negative contribution to the increase in China’s rice production.


2020 ◽  
Vol 7 (4) ◽  
pp. 487-506
Author(s):  
Pshtiwan Gharib Ghafur ◽  
Zhyan Sleman Hama ◽  
Khanda Saed Tofiq

In this research is conducted about the impact of climate change on walnut production in Biara Sub-district. Descriptive – analytical method was utilized to obtain the proposed objectives by using SPSS – 16. The predominant objective of this analysis is to illustrate the inevitable impact of climate change on the walnut production in 1973-2017. The results on which the study was based on are Pearson Correlation which demonstrates that there is an indirect correlation between temperature and walnut production, and an equivalent relation with precipitation. For instance, in Multiple Regression Analysis, the impact of temperature and precipitation on small walnut trees is 4%, and on medium walnut trees is 25.8%, whereas on big walnut trees it is 24.8%. Moreover, in Coefficient of Determination, the effect of temperature on small walnut trees is 3.4%, on medium and large walnut trees increase to 18.6% and 24.7% respectively. However, precipitation impact is less than 1%, except medium walnut trees is less than 6%. The apparent wide gaps between temperature and precipitation which affects production is due to low topographic elevation and the presence of 82 springs in the study area. Additionally, an increase in temperature, a decrease in precipitation and subfreezing temperatures, in other words, chill dates, in spring time, ultimately leads to an increase in hazardous insects such as stem worms and beetle. These issues could be solved through selecting different varieties of walnuts and planting at higher elevation, construct more irrigation projects and regular irrigation, in particular during drought seasons, improving agricultural facilities and importing sufficient pesticides to tackle walnut trees diseases, is also among the precautionary methods.


2021 ◽  
Author(s):  
Shafkat Ahsan ◽  
M. Sultan Bhat ◽  
Akhtar Alam ◽  
Hakim Farooq ◽  
Hilal Ahmad Shiekh

AbstractThe frequency and severity of climatic extremes is expected to escalate in the future primarily because of the increasing greenhouse gas concentrations in the atmosphere. This study aims to assess the impact of climate change on the extreme temperature and precipitation scenarios using climate indices in the Kashmir Himalaya. The analysis has been carried out for the twenty-first century under different representative concentration pathways (RCPs) through the Statistical Downscaling Model (SDSM) and ClimPACT2. The simulation reveals that the climate in the region will get progressively warmer in the future by increments of 0.36–1.48 °C and 0.65–1.07 °C in mean maximum and minimum temperatures respectively, during 2080s (2071–2100) relative to 1980–2010 under RCP8.5. The annual precipitation is likely to decrease by a maximum of 2.09–6.61% (2080s) under RCP8.5. The seasonal distribution of precipitation is expected to alter significantly with winter, spring, and summer seasons marking reductions of 9%, 5.7%, and 1.7%, respectively during 2080s under RCP8.5. The results of extreme climate evaluation show significant increasing trends for warm temperature-based indices and decreasing trends for cold temperature-based indices. Precipitation indices on the other hand show weaker and spatially incoherent trends with a general tendency towards dry regimes. The projected scenarios of extreme climate indices may result in large-scale adverse impacts on the environment and ecological resource base of the Kashmir Himalaya.


Sign in / Sign up

Export Citation Format

Share Document