A microstructure-based parameterization of the effectivetransverse isotropic elasticity tensor of snow, firn, and porous ice

Author(s):  
kavitha sundu ◽  
Henning Loewe

<p>Effective elastic properties of snow, firn, and porous ice are key for<br>various applications and influenced by ice volume fraction and<br>different types of anisotropy. The geometrical anisotropy of the ice-matrix created by temperature gradient metamorphism in low-density<br>snow and firn and the crystallographic anisotropy commonly created<br>upon deformation in high-density, porous ice. Towards a quantitative-distinction of the impact of the different anisotropies on elasticity,<br>we derived a parametrization for the effective elasticity tensor over<br>the entire range of volume fractions as a function of density and<br>geometrical anisotropy. We employed FEM simulations on 395 X-ray<br>tomography microstructures of Lab, Alpine, Arctic, and Antarctic<br>samples. We employed an empirical two-parameter modification of the<br>anisotropic Hashin Shtrikman bounds to obtain a closed-form<br>parametrization accounting for density, anisotropy, and the correct<br>limiting behavior for bubbly ice. We compare our prediction to<br>previous parametrizations derived in limited density regimes and we<br>utilize the Thomson parameter to compare the geometrical-elastic<br>anisotropy to the crystallographic-elastic anisotropy of<br>monocrystalline ice. Our results suggest that a coupled treatment of<br>geometrical and crystallographic effects would be beneficial for a<br>careful interpretation of acoustic measurements in deep firn.</p>

Author(s):  
Arash Shahbaztabar ◽  
Ahmad Rahbar Ranji

Free vibration analysis of functionally graded (FG) rectangular plates on two-parameter elastic foundation and vertically coupled with fluid is the objective of this work. The fluid domain is considered to be infinite in length, but it is bounded in depth and width directions, and the effects of hydrostatic pressure and free surface waves are not taken into account. The mechanical properties of the FG plates are assumed to vary continuously through the thickness direction according to a power-law distribution of the volume fraction of the constituents. The accuracy and applicability of the formulation is illustrated by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Yahya Palizdar ◽  
Jafar Rassizadehghani ◽  
...  

AbstractIn this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800 °C followed by quenching. Decreasing the IHT temperature from 800 to 750 °C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100 °C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750 °C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800 °C) to 504 HV (750 °C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1423
Author(s):  
George Stefanou ◽  
Dimitrios Savvas ◽  
Panagiotis Metsis

The purpose of this paper is to determine the random spatially varying elastic properties of concrete at various scales taking into account its highly heterogeneous microstructure. The reconstruction of concrete microstructure is based on computed tomography (CT) images of a cubic concrete specimen. The variability of the local volume fraction of the constituents (pores, cement paste and aggregates) is quantified and mesoscale random fields of the elasticity tensor are computed from a number of statistical volume elements obtained by applying the moving window method on the specimen along with computational homogenization. Based on the statistical characteristics of the mesoscale random fields, it is possible to assess the effect of randomness in microstructure on the mechanical behavior of concrete.


Author(s):  
Paulo Roberto Arruda Zantut ◽  
Mariana Matera Veras ◽  
Sarah Gomes Menezes Benevenutto ◽  
Angélica Mendonça Vaz Safatle ◽  
Ricardo Augusto Pecora ◽  
...  

Abstract Background Prenatal exposure to Cannabis is a worldwide growing problem. Although retina is part of the central nervous system, the impact of maternal Cannabis use on the retinal development and its postnatal consequences remains unknown. As the prenatal period is potentially sensitive in the normal development of the retina, we hypothesized that recreational use of Cannabis during pregnancy may alter retina structure in the offspring. To test this, we developed a murine model that mimics human exposure in terms of dose and use. Methods Pregnant BalbC mice were exposed daily for 5 min to Cannabis smoke (0.2 g of Cannabis) or filtered air, from gestational day 5 to 18 (N = 10/group). After weaning period, pups were separated and examined weekly. On days 60, 120, 200, and 360 after birth, 10 pups from each group were randomly selected for Spectral Domain Optical Coherence Tomography (SD-OCT) analysis of the retina. All retina layers were measured and inner, outer, and total retina thickness were calculated. Other 37 mice from both groups were sacrificed on days 20, 60, and 360 for retinal stereology (total volume of the retina and volume fraction of each retinal layer) and light microscopy. Means and standard deviations were calculated and MANOVA was performed. Results The retina of animals which mother was exposed to Cannabis during gestation was 17% thinner on day 120 (young adult) than controls (P = 0.003) due to 21% thinning of the outer retina (P = 0.001). The offspring of mice from the exposed group presented thickening of the IS/OS in comparison to controls on day 200 (P < 0.001). In the volumetric analyzes by retinal stereology, the exposed mice presented transitory increase of the IS/OS total volume and volume fraction on day 60 (young adult) compared to controls (P = 0.008 and P = 0.035, respectively). On light microscopy, exposed mice presented thickening of the IS/OS on day 360 (adult) compared to controls (P = 0.03). Conclusion Gestational exposure to Cannabis smoke may cause structural changes in the retina of the offspring that return to normal on mice adulthood. These experimental evidences suggest that children and young adults whose mothers smoked Cannabis during pregnancy may require earlier and more frequent clinical care than the non-exposed population.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Arnav Sanyal ◽  
Tony M. Keaveny

The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


2020 ◽  
Vol 9 (4) ◽  
pp. 362-374
Author(s):  
J. C. Umavathi ◽  
Ali J. Chamkha

Nanotechnology has infiltrated into duct design in parallel with many other fields of mechanical, medical and energy engineering. Motivated by the excellent potential of nanofluids, a subset of materials engineered at the nanoscale, in the present work, a new mathematical model is developed for natural convection in a vertical duct containing nanofluid. Numerical scrutiny for the double-diffusive free and forced convection within a duct encumbered with nanofluid is performed. Buongiorno’s model is deployed to define the nanofluid. Robin boundary conditions are used to define the surface boundary conditions. Thermal and concentration equations envisage the viscous, Brownian motion, thermosphores of the nanofluid, Soret and Dufour effects. Using the Boussi-nesq approximation the solutal buoyancy effect as a result of gradients in concentration are incorporated. The conservation equations which are nonlinear are numerically estimated using fourth order Runge-Kutta methodology and analytically ratifying regular perturbation scheme. The mass, heat, nanoparticle concentration and species concentration fields on eight dimensionless physical parameters such as thermal and mass Grashof numbers, Brownian motion parameter, thermal parameter, Prandtl number, Eckert number, Schmidt parameter, and Soret parameter are calculated. The impact of these parameters are outlined pictorially. The velocity and temperature fields are boosted with the thermal Grashof number. The Soret and the Schemidt parameters reduces the nanoparticle volume fraction but it heightens the momentum, temperature and concentration. At the cold wall thermal and concentration Grashof numbers reduces the Nusselt values but they increase the Nusselt values at the hot wall. The reversal consequence was attained at the hot plate. The perturbation and Runge-Kutta solutions are equal in the nonappearance of Prandtl number. The (E. Zanchini, Int. J. Heat Mass Transfer 41, 3949 (1998)). results are restored for the regular fluid. The heat transfer rate is high for nanofluid when matched with regular fluid.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Vivek Palepu ◽  
Melvin D. Helgeson ◽  
Michael Molyneaux-Francis ◽  
Srinidhi Nagaraja

Several approaches (anterior, posterior, lateral, and transforaminal) are used in lumbar fusion surgery. However, it is unclear whether one of these approaches has the greatest subsidence risk as published clinical rates of cage subsidence vary widely (7–70%). Specifically, there is limited data on how a patient's endplate morphometry and trabecular bone quality influences cage subsidence risk. Therefore, this study compared subsidence (stiffness, maximum force, and work) between anterior (ALIF), lateral (LLIF), posterior (PLIF), and transforaminal (TLIF) lumbar interbody fusion cage designs to understand the impact of endplate and trabecular bone quality on subsidence. Forty-eight lumbar vertebrae were imaged with micro-ct to assess trabecular microarchitecture. micro-ct images of each vertebra were then imported into image processing software to measure endplate thickness (ET) and maximum endplate concavity depth (ECD). Generic ALIF, LLIF, PLIF, and TLIF cages made of polyether ether ketone were implanted on the superior endplates of all vertebrae and subsidence testing was performed. The results indicated that TLIF cages had significantly lower (p < 0.01) subsidence stiffness and maximum subsidence force compared to ALIF and LLIF cages. For all cage groups, trabecular bone volume fraction was better correlated with maximum subsidence force compared to ET and concavity depth. These findings highlight the importance of cage design (e.g., surface area), placement on the endplate, and trabecular bone quality on subsidence. These results may help surgeons during cage selection for lumbar fusion procedures to mitigate adverse events such as cage subsidence.


Sign in / Sign up

Export Citation Format

Share Document