Validation of Using SWARM to Fill-in the GRACE/GRACE-FO Gap: Case Study in Africa

Author(s):  
Hussein Mohasseb ◽  
Hussein A Abd-Elmotaal ◽  
WenBin Shen

<p>The American/German missions Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On (GRACE-FO) and the European mission (Swarm) play an important role in study of the Earth's gravity field with unprecedented high-precision and high-resolution measurements. The aim of this study is to use Swarm data to fill-in the data-gap between GRACE and GRACE-FO missions from July 2017 to May 2018, and evaluate the new datasets in Africa. We used the available data from the triple GRACE processing centers CSR, GFZ and JPL, in addition to the Swarm TVGF data provided by the Czech Academy of Sciences (ASU) and the International Combination Service for Time-variable Gravity (COST-G). The GRCAE and Swarm date have been tested in the frequency and space domains. For the frequency domain, the data assessed in two different levels: the potential degree variances and the harmonic coefficients themselves. The results show consistency between GRACE/GRACE-FO and Swarm for all processing centers. In the space domain, a comparison between GRACE/GRACE-FO and Swarm for the TWS, gravity anomaly, and the potential/geoid have been carried out. For the TWS, an artificial gap (AG) - simulating the gap between GRACE and GRACE-FO – has been artificially made in the GRACE data from July 2015 to May 2016. The GRACE AG has been filled by the two sets of the Swarm data for CSR, GFZ and JPL. The results indicated that the best agreement has been achieved between GRACE-CSR and Swarm COST-G. For the gravity anomaly and the potential/geoid, a better agreement between GRACE and Swarm data has been concluded. Eventually, we chose Swarm COST-G data to fill-in the gap between GRACE and GRACE-FO CSR in order to be used, among others, to estimate the TWS in Africa for the period from April 2002 to October 2020. This study is supported by the National Natural Science Foundations of China (NSFC) under Grants Nos. 42030105, 41721003, 41804012, 41631072, and 41874023.</p>

2020 ◽  
Author(s):  
Peyman Saemian ◽  
Mohammad Javad Tourian ◽  
Nico Sneeuw

<p>Climate change and the growing demand for freshwater have raised the frequency and intensity of extreme events like drought. Satellite observations have improved our understanding of the temporal and spatial variability of droughts. Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-FO) have been observing variations in Earth's gravity field yielding valuable information about changes in terrestrial water storage anomaly (TWSA). The terrestrial water storage vertically integrates all forms of water on and beneath land surface including snow, surface water, soil moisture, and groundwater storage.</p><p>Drought indices help to monitor drought by characterizing it in terms of their severity, location, duration and timing. Several drought indices have been developed based on GRACE water storage anomaly from a GRACE-based climatology, most of which suffer from the short record of GRACE, about 15 years, for their climatology. The limited duration of the GRACE observations necessitates the use of external datasets of TWSA with a more extended period for climatology. Drought characterization comes with its own uncertainties due to the inherent uncertainty in the GRACE data, the various post-processing approaches of GRACE data, and different options for external datasets on the other hand.</p><p>This study offers a method to quantify uncertainties for the storage-based drought index. Moreover, we assess the sensitivity of major global river basins to the duration of the observations. The outcome of the study is invaluable in the sense that it allows for a more informative storage based drought, including uncertainty, thus enabling a more realistic risk assessment.</p>


2005 ◽  
Vol 107 ◽  
pp. 37-42 ◽  
Author(s):  
Yue Jin Wu ◽  
Ying Zhang ◽  
Wang Yu ◽  
Mei Song ◽  
Zeng Liang Yu

This paper summarizes the development of the research and application of ion implantation biotechnology on plant, animal and microorganism varieties Improvement, and it also includes the contemporary effects and utilization of ion implantation, and the application of ion implantation on trans-gene plant. In 1980s, cooperated with Anhui Academy of Agriculture Sciences, the ion implantation was applied for crops’ improvement by Plasma Physics Research Institute of the Chinese Academy of Sciences, and made greater progress in both practice and theory, which attracted many scholars inside and outside. By using ion implantation, extensive researches had been made in different materials including plant, animal and microorganism on different levels. With combination of physics and biology, as a new cross subject and a unique technology system, the ion implantation biotechnology came into being, and created more dramatically economic and social benefit in crops improvement by transferring exogenous gene. This paper summarizes the development of the research and application of ion implantation biotechnology.


2020 ◽  
Vol 324 (2) ◽  
pp. 262-272
Author(s):  
I.V. Doronin ◽  
T.N. Dujsebayeva ◽  
K.M. Akhmedenov ◽  
A.G. Bakiev ◽  
K.N. Plakhov

The article specifies the type locality of the Steppe Ribbon Racer. The holotype Coluber (Taphrometopon) lineolatus Brandt, 1838 is stored in the reptile collection of the Zoological Institute of the Russian Academy of Sciences (ZISP No 2042). Literature sources provide different information about the type locality. A mistake has been made in the title of the work with the original species description: the western coast of the sea was indicated instead of the eastern one. The place of capture was indicated as “M. Caspium” (Caspian Sea) on the label and in the reptile inventory book of the Zoological Museum of the Academy of Sciences. The specimen was sent to the museum by G.S. Karelin. The “1842” indicated on the labels and in the inventory book cannot be the year of capture of the type specimen, just as the “1837” indicated by A.M. Nikolsky. In 1837, Karelin was in Saint Petersburg and in 1842 in Siberia. Most likely, 1837 is the year when the collection arrived at the Museum, and 1842 is the year when the information about the specimen was recorded in the inventory book (catalog) of the Zoological Museum of the Academy of Sciences. In our opinion, the holotype was caught in 1932. From Karelin’s travel notes of the expedition to the Caspian Sea in 1832, follows that the snake was recorded in two regions adjacent to the eastern coast of the Caspian Sea – Ungoza Mountain (“Mangyshlak Mountains”) and site of the Western Chink of Ustyurt between Zhamanairakty and Kyzyltas Mountains (inclusive) on the northeast coast of Kaydak Sor (“Misty Mountains”). In our article, Karelin’s route to the northeastern coast of the Caspian Sea in 1832 and photographs of these localities are given. The type locality of Psammophis lineolatus (Brandt, 1838) should be restricted to the Mangystau Region of the Kazakhstan: Ungoza Mountain south of Sarytash Gulf, Mangystau (Mangyshlak) Penninsula (44°26´ N, 51°12´ E).


2021 ◽  
Vol 11 (10) ◽  
pp. 4620
Author(s):  
Niki Kousi ◽  
Christos Gkournelos ◽  
Sotiris Aivaliotis ◽  
Konstantinos Lotsaris ◽  
Angelos Christos Bavelos ◽  
...  

This paper discusses a digital twin-based approach for designing and redesigning flexible assembly systems. The digital twin allows modeling the parameters of the production system at different levels including assembly process, production station, and line level. The approach allows dynamically updating the digital twin in runtime, synthesizing data from multiple 2D–3D sensors in order to have up-to-date information about the actual production process. The model integrates both geometrical information and semantics. The model is used in combination with an artificial intelligence logic in order to derive alternative configurations of the production system. The overall approach is discussed with the help of a case study coming from the automotive industry. The case study introduces a production system integrating humans and autonomous mobile dual arm workers.


2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Harika Munagapati ◽  
Virendra M. Tiwari

The nature of hydrological seasonality over the Himalayan Glaciated Region (HGR) is complex due to varied precipitation patterns. The present study attempts to exemplify the spatio-temporal variation of hydrological mass over the HGR using time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) satellite for the period of 2002–2016 on seasonal and interannual timescales. The mass signal derived from GRACE data is decomposed using empirical orthogonal functions (EOFs), allowing us to identify the three broad divisions of HGR, i.e., western, central, and eastern, based on the seasonal mass gain or loss that corresponds to prevailing climatic changes. Further, causative relationships between climatic variables and the EOF decomposed signals are explored using the Granger causality algorithm. It appears that a causal relationship exists between total precipitation and total water storage from GRACE. EOF modes also indicate certain regional anomalies such as the Karakoram mass gain, which represents ongoing snow accumulation. Our causality result suggests that the excessive snowfall in 2005–2008 has initiated this mass gain. However, as our results indicate, despite the dampening of snowfall rates after 2008, mass has been steadily increasing in the Karakorum, which is attributed to the flattening of the temperature anomaly curve and subsequent lower melting after 2008.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


2020 ◽  
Vol 25 (1) ◽  
pp. 135-149
Author(s):  
Jan Siegemund

AbstractLibel played an important and extraordinary role in early modern conflict culture. The article discusses their functions and the way they were assessed in court. The case study illustrates argumentative spaces and different levels of normative references in libel trials in 16th century electoral Saxony. In 1569, Andreas Langener – in consequence of a long stagnating private conflict – posted several libels against the nobleman Tham Pflugk in different public places in the city of Dresden. Consequently, he was arrested and charged with ‘libelling’. Depending on the reference to conflicting social and legal norms, he had therefore been either threatened with corporal punishment including his execution, or rewarded with laudations. In this case, the act of libelling could be seen as slander, but also as a service to the community, which Langener had informed about potentially harmful transgression of norms. While the common good was the highest maxim, different and sometimes conflicting legally protected interests had to be discussed. The situational decision depended on whether the articulated charges where true and relevant for the public, on the invective language, and especially on the quality and size of the public sphere reached by the libel.


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


Sign in / Sign up

Export Citation Format

Share Document