Variations of ocean biogeochemistry in a transient deglacial simulation with MPI-ESM

Author(s):  
Bo Liu ◽  
Katharina D. Six ◽  
Tatiana Ilyina ◽  
Thomas Extier

<p>Variations in ocean-atmosphere carbon exchange, in response to varying physical and biogeochemical ocean states, is one of the major causes of the glacial-interglacial atmospheric CO<sub>2</sub> changes. Most of the existing modelling studies use time-slice simulations with Earth System Models to quantify the proposed mechanisms, such as the impact of a weakened Southern Ocean westerlies and a massive discharge of freshwater from ice sheet melting on the deglacial atmospheric CO<sub>2</sub> rise. We present the variations of ocean biogeochemistry in a transient deglaciation (21 – 10 kB.P.) simulation using the Max Planck Institute Earth System Model. We force the model with reconstructions of atmospheric greenhouse gas concentrations, orbital parameters, ice sheet and dust deposition. In line with the physical ocean component, we account for the automatic adjustment of all marine biogeochemical tracers in response to changing bathymetry and coastlines that relate to deglacial melt water discharge and isostatic adjustment. We include a new representation of the stable carbon isotope (<sup>13</sup>C) in the ocean biogeochemical component to evaluate the simulation against δ<sup>13</sup>C records from sediment cores.</p><p>The model reproduces several proposed oceanic CO<sub>2</sub> outgassing mechanisms. First, the net primary production (NPP) in the North Atlantic Ocean dramatically decrease (by 40 – 80%) during the first melt water pulse (15 – 14 kB.P.) which is caused by the weakening in the strength of the Atlantic Meridional Overturning Circulation from 21 to 3 Sv. However, globally the oceanic NPP only slightly decreases by 8% as oceanic NPP in the South Hemisphere increases during the same period. Second, during the melt water pulse in the Southern Ocean the ventilation of intermediate waters, which has high DIC content and low alkalinity concentration, is slightly enhanced. Third, the surface alkalinity decreases due to dilution and due to episodic shifts between CaCO<sub>3</sub> production and opal production by phytoplankton. Lastly, CO<sub>2</sub> solubility decreases with increasing deglacial sea surface temperature. The increase of surface pCO<sub>2</sub> caused by the above mechanisms is, however, smaller than that of the prescribed atmospheric CO<sub>2</sub>. Thus, the ocean is a weak carbon sink in this deglacial simulation.</p>

2014 ◽  
Vol 11 (10) ◽  
pp. 2635-2643 ◽  
Author(s):  
R. Death ◽  
J. L. Wadham ◽  
F. Monteiro ◽  
A. M. Le Brocq ◽  
M. Tranter ◽  
...  

Abstract. Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07–0.2 Tg yr−1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for seasonally very high in situ measurements of PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high measured marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.


2021 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka ◽  
Takahito Mitsui ◽  
Fuyuki Saito

Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial time-scale. Recent studies have shown that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally results in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials was shorter during the Marine Isotope Stage 3 (MIS3) compared with MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigated the role of glacial ice sheets. For this purpose, freshwater hosing experiments were conducted with an atmosphere–ocean general circulation model under MIS5a, MIS3 and MIS3 with MIS5a ice sheet conditions. The impact of ice sheet differences on the duration of the stadials was evaluated by comparing recovery times of the AMOC after freshwater forcing was reduced. Hosing experiments showed a slightly shorter recovery time of the AMOC in MIS3 compared with MIS5a, which was consistent with ice core data. We found that larger glacial ice sheets in MIS3 shortened the recovery time. Sensitivity experiments showed that stronger surface winds over the North Atlantic shortened the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which set favourable conditions for oceanic convection. In contrast, we also found that surface cooling by larger ice sheets tended to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet in MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, when the effect of surface wind played a larger role.


2013 ◽  
Vol 10 (7) ◽  
pp. 12551-12570 ◽  
Author(s):  
R. Death ◽  
J. L. Wadham ◽  
F. Monteiro ◽  
A. M. Le Brocq ◽  
M. Tranter ◽  
...  

Abstract. Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07–1.0 Tg yr−1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for very high seasonally observed PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high observed marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.


2014 ◽  
Vol 7 (4) ◽  
pp. 4353-4381
Author(s):  
M. Bügelmayer ◽  
D. M. Roche ◽  
H. Renssen

Abstract. Recent modelling studies have indicated that icebergs alter the ocean's state, the thickness of sea ice and the prevailing atmospheric conditions, in short play an active role in the climate system. The icebergs' impact is due to their slowly released melt water which freshens and cools the ocean. The spatial distribution of the icebergs and thus their melt water depends on the forces (atmospheric and oceanic) acting on them as well as on the icebergs' size. The studies conducted so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. To address these shortcomings, we used the climate model iLOVECLIM that includes actively coupled ice-sheet and iceberg modules, to conduct 15 sensitivity experiments to analyse (1) the impact of the forcing fields (atmospheric vs. oceanic) on the icebergs' distribution and melt flux, and (2) the effect of the used initial iceberg size on the resulting Northern Hemisphere climate and ice sheet under different climate conditions (pre-industrial, strong/weak radiative forcing). Our results show that, under equilibrated pre-industrial conditions, the oceanic currents cause the bergs to stay close to the Greenland and North American coast, whereas the atmospheric forcing quickly distributes them further away from their calving site. These different characteristics strongly affect the lifetime of icebergs, since the wind-driven icebergs melt up to two years faster as they are quickly distributed into the relatively warm North Atlantic waters. Moreover, we find that local variations in the spatial distribution due to different iceberg sizes do not result in different climate states and Greenland ice sheet volume, independent of the prevailing climate conditions (pre-industrial, warming or cooling climate). Therefore, we conclude that local differences in the distribution of their melt flux do not alter the prevailing Northern Hemisphere climate and ice sheet under equilibrated conditions und constant supply of icebergs. Furthermore, our results suggest that the applied radiative forcing scenarios have a stronger impact on climate than the used initial size distribution of the icebergs.


2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2021 ◽  
Author(s):  
Marlene Klockmann ◽  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz

<p><span>Coupled climate models have produced very different states of the Atlantic Meridional Overturning Circulation (AMOC) in simulations of the Last Glacial Maximum (LGM). In particular, many of them failed to capture the shoaling of the upper AMOC cell, which was indicated by reconstructions. In sensitivity simulations with the Max-Planck-Institute Earth System Model (MPI-ESM) we found that the glacial AMOC response is the sum of two large opposing effects: a strengthening and deepening of the upper cell in response to the glacial ice sheets and a weakening and shoaling of the upper cell in response to the low glacial greenhouse gas concentrations. The magnitude of the respective effects likely depends on the background climate, the ice sheet reconstruction used, and model specifics such as the representation of brine release in the Southern Ocean. </span></p><p><span>Transient simulations of the deglaciation with two differently tuned versions of MPI-ESM and two different ice-sheet reconstructions differ strongly in their respective AMOC states during the LGM. These simulations, together with selected PMIP3 and PMIP4 LGM simulations, provide a good opportunity to compare the effect of different ice sheet reconstructions on the glacial AMOC. We compare key variables such as water mass properties, salt transport and Southern Ocean sea-ice formation across this ensemble of opportunity with the aim of increasing our understanding of the role of ice sheets in the glacial AMOC response.</span></p>


2015 ◽  
Vol 12 (1) ◽  
pp. 193-208 ◽  
Author(s):  
C. D. Nevison ◽  
M. Manizza ◽  
R. F. Keeling ◽  
M. Kahru ◽  
L. Bopp ◽  
...  

Abstract. The observed seasonal cycles in atmospheric potential oxygen (APO) at a range of mid- to high-latitude surface monitoring sites are compared to those inferred from the output of six Earth system models (ESMs) participating in the fifth phase of the Coupled Model Intercomparison Project phase 5 (CMIP5). The simulated air–sea O2 fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Three of the ocean biogeochemistry models tested are able to reproduce the observed APO cycles at most sites, to within the large TransCom3-era ATM uncertainty used here, while the other three generally are not. Net primary production (NPP) and net community production (NCP), as estimated from satellite ocean color data, provide additional constraints, albeit more with respect to the seasonal phasing of ocean model productivity than overall magnitude. The present analysis suggests that, of the tested ocean biogeochemistry models, the community ecosystem model (CESM) and the Geophysical Fluid Dynamics Laboratory (GFDL) ESM2M are best able to capture the observed APO seasonal cycle at both northern and southern hemispheric sites. In most models, discrepancies with observed APO can be attributed to the underestimation of NPP, deep ventilation or both in the northern oceans.


2020 ◽  
Author(s):  
Charles Pelletier ◽  
Lars Zipf ◽  
Konstanze Haubner ◽  
Hugues Goosse ◽  
Frank Pattyn ◽  
...  

<p>From 2016 on, observed tendencies of Southern Ocean sea surface temperatures and Antarctic sea ice extent (SIE) have shifted from cooling down (with SIE increase) to warming up (SIE decrease). This change of Southern Ocean surface thermal properties has been sustained since, which indicates that it is not solely due to the interannual variability of the atmosphere, but also to modifications in the ocean itself. Among other physical phenomena, the acceleration of continental ice shelf melt, through its subsequent impact on the Southern Ocean stratification, has been proposed as one of the potential meaningful drivers of the sea ice changes. Reciprocally, recent studies suggest that besides atmosphere forcings, the upper ocean thermal content bears significant impact on ice shelf melt rates and dynamics. Here we present a new circumpolar coupled Southern Ocean – Antarctic ice sheet configuration aiming at investigating the impact of this ocean – continental ice feedback, developed within the framework of the PARAMOUR project. Our setting relies on the ocean and sea ice model NEMO3.6-LIM3 sending ice shelf melt rates to the Antarctic ice sheet model f.ETISh v1.5, who in turn responds to it and provides updated ice shelf cavity geometry. Both technical aspects and first coupled results are presented.</p>


2015 ◽  
Vol 11 (5) ◽  
pp. 4391-4423 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
M.-F. Loutre ◽  
T. Fichefet

Abstract. Large climate perturbations occurred during Termination II when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the climate evolution at the onset of the Last Interglacial. The period from 135 to 120 kyr BP is simulated with the Earth system model of intermediate complexity LOVECLIM v.1.3 with prescribed evolution of the Antarctic ice sheet, the Greenland ice sheet and the other Northern Hemisphere ice sheets. Variations in meltwater fluxes from the Northern Hemisphere ice sheets lead to North Atlantic temperature changes and modifications of the strength of the Atlantic meridional overturning circulation. By means of the interhemispheric see-saw effect, variations in the Atlantic meridional overturning circulation also give rise to temperature changes in the Southern Hemisphere, which are modulated by the direct impact of Antarctic meltwater fluxes into the Southern Ocean. Freshwater fluxes from the melting Antarctic ice sheet lead to a millennial time scale oceanic cold event in the Southern Ocean with expanded sea ice as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.


Sign in / Sign up

Export Citation Format

Share Document